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Invariant measure for an infinite neural network.
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Abstract
We investigate the large-time limit behaviour of an infinite locally con-
nected network. We show an exponential decay of the spatial covariances
for the limit measure. We prove also the Gibbsian property for the limit
measure.

1. Introduction

We study here an infinite-particle limit of a neural model [3], where it is
assumed that an independent neuron can be described by some Markov pro-
cess. This model takes into account the well-known facts from physiology: the
spiking nature of the neuronal activity and the exponential decay of the mem-
brane potential in the absence of afferent spikes. The interactions between the
particles (neurons) in the model depend on time. Some results on the large-time
behaviour of this model with excitatory connections one can find in [5]. The
simulations carried out in [3], provide good evidence that this model explains a
wide range of experimental data on existence of equilibrium and non-equilibrium
phase transitions and metastable states. The theoretical proof in [3] of the exis-
tence of phase transitions in the considered model is based on the earlier result
[2], which establishes the Gibbsian form for the invariant measure under cer-
tain conditions. Although there were given some arguments on the feasibility
of these conditions, they are difficult to check.

The model described in [3] is non-Markovian. The notion of a process of
inhibitions, which is a certain embedded Markov chain for this model, was
developed in [6]. The inhibition of a neuron represents the duration of time
before the first moment of firing of this neuron if no interaction takes place
meanwhile. Note, that a process of inhibitions had been introduced and studied
earlier in the literature as a simplified model for the neuronal activity (e.g., [1]).

Recently ergodicity of the infinite-particle limit of the process of inhibitions
with local connections was proved in [7]. The provided proof is constructive,
and is based on the method of cluster expansions [4]. Using cluster expansions,
obtained in [7], we derive here some results on the invariant measure of the
infinite-particle process of inhibitions.

The purpose of this paper is to describe the large-time limit measure for the
infinite process of inhibitions. We show in particular, the exponential decay of
the spatial covariances.
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Further we will establish the Gibbsian property of the invariant measure for
the considered process. It is known (see, for example, [4]), that Gibbs random
field is not unique for certain parameters. Hence, our results give new evidence
of the existence of phase transitions in the considered neural model for some
parameters. This together with previous results [2]-[3] gives us hope for the
development of an adequate stochastic dynamical model for neuronal activity.

2. Model and results

Let us fix K > 0 and a finite set {lx,k = 1,..., K} € Z”\{0} arbitrarily, and
define for any z € Z" its neighbourhood:

0(z)={z+,k=1,...,K}.

We define on some probability space independent random positive variables
X.(0), z € Z¥. The density of the distribution of X,(0) is

— 9,3/2,2au (y—a:) _ ay — a,)®
pOz(u) = 2a°"“e U\/mg exp ( 0'2(626"" — 1)

for any z € A and v € Ry, wherea > 0, 0 > 0, y > 0 and a, < y are the
parameters of the model.

We define also on the same probability space mutually independent positive
variables Y and 6(u), u > 0, with the following densities of the distributions,
respectively: '

—9n3/22aw ____ Y _ ____gyz_
p(v) = 20"/ Um exP( o2(e2ev — 1)) ;
and
_ 2a3/2a o aa2e-—2au
Pt = e T O (“m) !
. v >0, where a > 0 is a connection constant for our model (clearly, if a = 0 then
f(u) = 0).

Consider now Markov process X(t) = (X,(t), z € Z*) € RZ",t > 0, with
initial state X(0) = (X.(0), z € Z¥). The dynamics of the process X(t) is
the following. As long as all the components of X(t) are strictly positive, they
decrease from the initial configuration X(0) linearly in time with rate one until
the first time ¢,, that one of the components reaches zero for some z; € Z¥. At
this moment ¢, the trajectory X,,(t;,) jumps to a random value, which is an
independent copy of Y, while every trajectory X;(t) with j € O(z1) receives
a positive increment 6(X;(t;,)) independent of the other processes. The rest
trajectories X;(t) with i € O(z1), remain continuous at ¢ = ¢,,. After moment
t,, the dynamics are repeated.

The existence of the infinite-dimensional process X(t),t > 0, has been proved

in [7]. As it is shown in [6], the 2-th component of the process X(t) represents
the inhibition of the z-th neuron at time ¢ in the original model [3].
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For any finite subset A C Z” let us denote by p(t,va), va € R4, 1 >0, a
density of the distribution of the process (X,(t), z € A), i.e.,

P{(X.(t), s € A) € B} = /B p(t, va)dva

for any t > 0 and any Borel set B in Rﬁ. (We use in this paper the following
notations: u4 = (u,, z € A) for any A C Z".) In particular, we denote po(t, v4),
t > 0,v4 € R4, the density of an ”unperturbed” process X°(t) = (X2(t),z €
Z*) (i.e., with @ = 0). By the definition of X°(¢) its coordinates X?(t) are
independent renewal processes for different z € Z¥. More precisely, for any
z € 2" process X2(t),t > 0, has left-continuous trajectories, which decrease
with rate 1 until the first moment T' of hitting zero, where a trajectory has a
random gap:
leilrflef(T+ €)=aY,

independent of the prehistory. It is not difficult to derive, that

po(t,UA) = HPOz(t,Uz),‘ (l)

z€EA
with .
po:(t,v) = pos(t+v) + / po:(w)p(t — u + v)du +
0

t d t—u
+ /0 Pos(u) (kgl /0 ps,(@)p(t —u+v—2z) da:) du

for every v € Ry and t > 0, where S := E;;l YLk>1Y1=1,..,k are
independent copies of the variable Y, and pg, is the density of the distribution
Sk. We put here p(w) = 0 for w < 0. It is shown in [7], that for any finite ¢ and
any connection constant.a a finite-particle density admits a cluster expansion,
i.e., it can be written in the following form:

p(t,v4) = polt,va) + fo: > G, (t, k,va), (2)

k=1 A—cluster z=(z1,...,2x)

where all the functions G, (¢, k,v4) in the right-hand side depend only on the
finite-particle densities (1) of the ”unperturbed” process X°(t), and the connec-
tion constant a. It is also proved in [7], that the series (2) converge uniformly
int > 0and vy € Ri. ” An A-cluster” means here a certain finite set in Z,
connected with the set A in the topology, naturally induced by the connections
between the neurons in our model. (Precise definitions one can find in [4] or
[7].) Formula (2) allows one to derive the following result on the convergence
of the finite-particle densities of the process X(t) for some set of the connection
constants.
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Theorem [7]. (a) For any 0 < ¢ < 1 there exist positive constants ag, C, v
and h such that for all & > 1,

0 < a < apa0-9 3)

and for all ¢, ¢ > 0 and u4 € RY

|p(t+t,,UA) _ P(t,UA)l < 03/2C|A|e_7me_hazze.4u’.

(b) For any 0 < o < 1 there exist positive constants a3, C1, 41 and h; such
that for any
0<e<a . (4)

and for all ¢, t' > 0 and u4 € R

lp(t +t',ua) — p(t,ua)| < ClAIe"“’e_"l Yea v
Making use of cluster expansions from [7], we obtain an exponential decay
of the covariance functions
Ci(z,2') = Cov{X,(t), Xz(t)}, t>0,
z,z' € Z¥, of the components of the process X(t), uniformly in ¢ € (0, 00).

Theorem 1. For any parameters of the model such that (3) or (4) holds,
there exist positive constants B and £ such that

|C:(z,2)| < Be~Pll==="l

" for allt>0and z,2' € 2",
where ||z|| := max; |z;| for any = (21,...,2,) € Z" .

Theorem [7] implies the existence and uniqueness of the following limit for
the set of parameters satisfying the conditions of Theorem [7}:

Jim p(t,ua) = pua) (8)

for any finite A C Z¥ and uy € Rﬁ. Thus, in this case the unique invariant
measure for the process X(t), t > 0, has the distribution in RZ", defined by its
finite-particle densities (5). Next we will show the exponential fast decay of the
dependence of the conditional densities on the values of the distant components.

Theorem 2. Let the parameters of the model satisfy the conditions (3) or
(4). Then for any finite A C B C A € Z" there exist positive constants I' and
v such that

|p(va |vB\a, a\B) — P(va |vB\4, Up\p)| < Te 744 ME)
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uniformly for any vg € Rf and ua\B, u’A\ B € Ri\B, where for any finite
subsets A and C in Z*

d(A,C):= min |lz— gyl

It follows from formula (2) that the conditional probabilities are strictly
positive. Hence, applying results [4], we get from Theorem 2 the following
corollary.

Corollary. The invariant measure for the process X(t) is Gibbsian (for
the parameters satisfying (3) or (4)).
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