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Abstract

In this paper, we discuss a methodology for applying feedforward
networks to problems of invariant pattern recognition. We present the
Group Representation Network (GRN}), a type of feedforward network
with the property that its output is invariant under a group of transfor-
mations of its input. Since the invariance of such a network is inbuilt,
it does not need to be learned. Consequently it is capable of a better
generalization performance than a conventional network for solving the
same symmetric problem. In addition, the GRN has fewer free parame-
ters than connections and we can hence expect it to train faster than an
ordinary network of the same connectivity.

1 Introduction

Let us consider a pattern classification problem in which the classification of any
given pattern is invariant under certain linear transformations of the pattern.
These transformations form a group.

Since we have prior knowledge of the classification problem, we should be
able to improve the generalization ability of any given pattern classifier (in our
case, a feedforward neural network) by incorporating this knowledge into the
classification system. We achieve this by enforcing constraints on the weights
of the connections in our network in order to make the output automatically
invariant under the desired group.

The remainder of the paper is arranged as follows. In Section 2 we define
our new class of invariant networks. In the following two sections, we present
results regarding the mathematical structure of these networks. In Section 5 we
describe some experiments performed using these networks, before we conclude.

We will refer often to terms of group representation theory. These can be
found in the standard literature, see for example [2], [4], [5].
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2 The Group Representation Network

Neural networks invariant or partially invariant under certain transformations
have been constructed in earlier work; see for example [1], [3], [8]. The networks
which we are about to describe are based on Symmetry Networks (see [6], [7]),
which are invariant under input node permutations.

Before we introduce our new class of networks, we wish to make some pre-
liminary definitions. Definition 2.1is standard representation theory; definition
2.2 is our own.

Definition 2.1 Given any two representations A and B of a group G, a homo-
morphism from A to B is a linear transformation T such that T A(g) = B(g)T
for all g € G. The space of all homomorphisms from A to B is called the
intertwining space of (A4, B).

Definition 2.2 Let A be a linear representation of the group G acting on the
real vector space V. Then the function f : IR — IR is said to preserve the
representation A if

f(Alg)v) = Alg)f(v) VwveV,geg,
where f denotes the eztension of f to componentwise action on a vector.
We are now able to define our new model.

Definition 2.3 A Group Representation Network (GRN) over a group G is a
feedforward network for which the following laws hold :

1. The nodes are partitioned into layers, and with-each layer is associated a
representation of G. There are no intra-layer connections. Each output
node is regarded as a separate layer associated with the trivial represen-
tation of G. When a given representation is finite, its dimension will be
equal to the number of nodes in the corresponding layer.

2. The linear transformation defined by the weights of connections between
two given layers is a homomorphism from the representation associated
with the lower layer to that associated with the higher.

3. The activation function f is the same for all nodes in a given layer, and
preserves the representation A associated with this layer.

The reader should note that we treat the operation of subtraction of a
threshold as being part of the activation function; thus in partlcular thresholds
must be the same for all nodes in a given layer.

The inductive proof that a GRN is indeed invariant under the action of the
group on the input layer is given in [9].
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3 Choice of Activation Functions

The choice of group representations in a GRN determines and is determined by
the choice of activation functions, as dictated by the constraint that the activa-
tion function of a given layer should preserve the corresponding representation.
We define two classes of representation which will prove to be particularly
useful.

A permutation representation of G acting on a vector space V is one which
acts by permuting the components of any v € V. An inversion representation
is one which permutes the components and also multiplies certain components
by —1.

It is easy to prove that all functions preserve any permutation represen-
tation, and also that all odd functions (but only odd functions) preserve any
inversion representation (see [9]). Other classes of representation are preserved
only by small classes of activation functions (such as linear functions) and are
of little use in a GRN.

4 Weight Matrix Structure

We now proceed to analyse the structure of the weight matrices of connec-
tions within a GRN. At this stage we will need to assume that G is finite, an
assumption which we have not made so far. .

Consider two connected layers of a GRN, the lower and higher layers cor-
responding to representations A and B respectively. The weight matrix of the
connections can be any homomorphism from A to B.

In [9] we prove that any homomorphism from A to B has the form

W = 3 A(g)XB(g)
geG

for some matrix X, and that furthermore any matrix of this form is such a
homomorphism. By making X a completely general matrix of independent
variables, we obtain an expression for a completely general homomorphism
W4, B, which is parameterized.

This generalized weight matric W4 p characterizes the intertwining space of
(A, B) and we take it to be our weight matrix. The parameters of the matrix
X become variable parameters of the neural network, rather than the weights
themselves. However, these parameters occur in certain linear combinations,
and so the effective number of free parameters, which we call the parameter
dimension of A and B, is typically considerably less than the number of connec-
tions. Since the weights are linear combinations of the new parameters (as seen
by the formula above), it becomes easy to adapt standard learning algorithms,
such as backpropagation, to GRNs.

We now consider the special case when the representation B is a permu-
tation representation. This is the most useful case, since permutation repre-
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sentations are the easiest representations to construct and analyse. The case
when B is an inversion representation is covered in [9].

4.1 Permutation Representations

Let A be an orthogonal representation of the group G, and P a permutation
representation, associated with two layers of a GRN (and with P corresponding
to the higher layer). We also assume P is transitive; if this is not the case, then
it can be written as the direct sum of transitive permutation representations,
and each of these can be considered separately.

Note that P acts by permutation on the nodes of its associated layer. Let
the stabilizing subgroup of one of these nodes be denoted by #.

Furthermore, let hiy, hs,...h, denote a set of coset representatives of H,
and define the characteristic matriz A(#) by the formula

AH) = = 3 A(h)

M i

Now we have the following result, proved in [9].

Theorem 4.1 The parameter dimension of A and P is equal to the trace of
the characteristic matric A(H), and the generalized weight matriz is given by :

pA(H)A(h1)
pA(H)A(h2)

PA(H)A(hrm)
where p denotes an n-dimensional row vector of independent parameters.

This result allows us to see with relative ease what the number of parameters
resulting from a given choice of permutation representation P would be, and
also provides a much simpler formula for the weight matrix itself.

5 Simulations

Symmetry Networks are a subclass of GRNs. In [6], some experiments were
carried out using Symmetry Networks on the graph isomorphism problem. In
these experiments, the Symmetry Networks trained much faster than conven-
tional networks.

Some experiments have also been done on the n-bit parity problem. With
+1-valued inputs, this problem becomes one which is invariant under the inver-
sion of an even number of bits. In this problem, the group invariance specifies
the problem completely.

We trained a GRN on the n-bit parity problem (with n = 2...5) to compare
its learning speed with that of an ordinary network with the same connectiv-
ity. The GRN structure used was a single hidden layer, with a permutation
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representation associated with the trivial subgroup. The learning algorithm
used was a variant of backpropagation, and the results obtained are listed in
Table 5.

n | Network || Frequency of | Mean # iterations
Type convergence when converged
2 std 80% 52
2 GRN 100% 30
3 std 100% 69
3 GRN 100% 45
4 std 100% 201
4 GRN 95% 63
5 std 100% 229
5 GRN 90% 100

Table 1: Convergence rates on the n-bit parity problem. For each n, the first
row gives the results for a standard network, and the second those for a GRN.

The GRN converged significantly faster in all cases than the other network,
though for higher values of n it occasionally failed to converge at all.

Another experiment was carried out on a simple character recognition prob-
lem, with invariance under 30° rotations and reflection in a vertical axis. The
72 training patterns were letters A, M and X, each specified by the coordinates
of their five key points. Thus each pattern was specified by a ten-dimensional
real vector. The networks used had three output nodes and two hidden layers
each of twelve nodes. ' - h ‘

The GRN took an average of about 2800 iterations of backpropagation to
converge on this problem, and having converged generalized perfectly on a set
of 72 test patterns. The conventional network trained in only 700 iterations,
but seemed to have learned the problem imperfectly, since it achieved a poorer
recognition rate of 92% on the test set. We suspect that this loss of gener-
alization ability accounts for the faster training of the ordinary feedforward
network.

Practical Note

Another advantage in the use of GRNs is that if all elements of an input set
are images of each other under the group action, then only one member of that
set needs to be presented to the GRN during training. The classification of all
the other members is given automatically by the group invariance.
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6 Summary

We have described the Group Representation Network, which is a new type of
feedforward network suitable for learning problems of invariant pattern classi-
fication. The structure of a GRN is determined by a choice of representation
of the invariance group for each layer in the network. This choice may restrict
the class of activation functions which are usable.

In the case where the invariance group is finite, we have presented formulae
for the matrices of weights in the GRN. These weights are expressed as linear
combinations of variable parameters. Standard learning algorithms can easily
be modified to adapt these new parameters, rather than the weights themselves.

We have reasoned, and supported with some experimental evidence, that
a GRN will learn faster and/or generalize better than a comparable standard
feedforward network.
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