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Abstract. This paper proposes an application independent method of
automating learning rule parameter selection using a form of supervisor
neural network, known as a Meta Neural Network, to alter the value of a
learning rule parameter during training. The Meta Neural Network is
trained using data generated by observing the training of a neural network
and recording the effects of the selection of various parameter values.
Experiments are undertaken to see how this method performs by using it
to adapt a global parameter of the RPROP learning rule.

1. Introduction

Despite the development of more efficient learning rules it remains necessary to
manually select appropriate learning rule parameter values in order to achieve an
acceptable solution. Two of the major problems associated with the selection of
suitable parameters are the erratic nature of the quality of the solution (where quality
can be defined as the speed of convergence and the accuracy of the resultant
network) and the waste of resources used to train an unsatisfactory network. The
quality of the solution is heavily dependant on the initial learning rule parameters
and training a neural network using general parameter values which are unsuitable
for the problem at hand can lead to a waste of computational resources.

The function of this paper is to investigate a method of parameter adaptation
which involves the use of a separate neural network (called a Meta Neural Network)
to select appropriate values for the 1" parameter of the RPROP learning rule. We
look at the results obtained when a standard RPROP rule and a Meta Neural
Network are applied to three benchmark problems.

1.1 RPROP
Resilient Backpropagation (RPROP) [1] is a local adaptive learning scheme. In it
the size of the derivative is taken to indicate the direction of the weight update. The

size of the weight update, Awfj’) , is determined by a weight update value A(i]‘.), where

tis the current epoch and i, j are the nodes adjoining the weight being updated. The
weight update value is adjusted as training is carried out.

Currently RPROP appears to be the most effective supervised learning rule
[21,[7]. This paper shows that the performance of RPROP can be improved further
by adding a supervisor network to make suggestions for parameter values.

The adaptation rules for the RPROP algorithm are:
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denotes the summed gradient information (slope) over all patterns
in the training set and 0 <1~ <1<n*. The value of " is usually 0.5 and n* is 1.2.

2. Experimental Description

The experiments performed investigate the effectiveness of using a Meta Neural
Network to adapt the " parameter of RPROP. A Meta Neural Network (MNN) is a
form of supervisor ‘neural network which makes suggestions to a conventional
learning rule on the values of various parameters. The earliest work on MNN’s [3]
proposed a system which made suggestions for weight and parameter values,
previous work in the area of parameter selection used a MNN to adapt the ¢
parameter for the Quickpropagation [4] learning rule [5]. In this paper three
different MNN’s are evaluated, one which uses its experience of learning on the
same problem domain as the network it is aiding and two which use experience of
learning on a different problem domain.

2.1 MNN Methodology

The scheme for creating a MNN to aid a conventional neural network is
composed of three stages. In the first stage data for training the MNN is created, in
the second stage the MNN is trained and in the third stage the MNN is used to guide
a conventional learning rule.

In stage 1 a backtracking system was set up which allowed a learning algorithm
to see the results of the selection of the next " value. Backtracking allows the
learning rule to backtrack from a parameter value choice that does not lead to a short
term decrease in error value. At each epoch potential 1" values are evaluated with
the 1" value leading to the greatest reduction in error in the training set being
retained and the training process continued. The value of " is limited to six values
(in the range 0.3 to 0.8) and at each epoch 1" is allowed to increase or decrease by
0.1 or remain at the current value, these three 1° values are then evaluated. After
the evaluation the results are used to augment a set S with the current network slope,
the previous network slope and the action (increment/maintain/decrement) which
produced the best value of " (i.e. the value of " which caused the largest reduction
in error).

In stage 2 the set S is used as a training set for a MNN, where the inputs are:
current network slope, previous network slope and the output is a single value which
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indicated whether the value of 7" increased, decreased or remained the same. The
learning rule used to train the MNN was RPROP, as described above.

In stage 3 at each epoch the RPROP learning rule passes the value of the current
network slope and the previous network slope to the MNN which suggests an
increase/decrease or no change in the value of . The upper and lower bounds for 1’
are 0.3 and 0.8.

3. Evaluation of the Meta Neural Networks

3.1 Benchmark problem description

Three benchmark problems, the Thyroid problem, the Building problem and the
Soybean problem are used to evaluate the effectiveness of MNN’s. These problems
are also used to produce data for the MNN’s which are in turn trained and evaluated.
The problems are taken from a comprehensive study of neural network benchmarks
[6] and have seen wide use in Al and Neural Network literature. The problems are
referred to in [6] as ‘“Thyroid a’, ‘Building a’ and ‘Soybean a’. A description of each
problems attributes and the network used with this problem is given in Table 1.

Problem Nr. of Inputs | Nr. of Outputs | Nr. of Examples | Network Used
Thyroid 21 3 7200 21-7-3
Building 14 3 4208 14-16-3
Soybean 82 19 683 82-32-19

Table 1: Benchmark problem description

3.2 Result Evaluation

The set of available examples is divided into three sets: a training set is used to
train the network, a validation set is used to evaluate the quality of the network
during training and to measure overfitting, finally a test set is used at the end of
training to evaluate the resultant network. In the series of experiments undertaken
50% of the problems total available examples are allocated for the training set, 25%
for the validation set and 25% for the test set.

The error measure, E, used was the squared error percentage [6]. This was
derived from the normalisation of the mean squared error to reduce its dependence
on the number of coefficients in the problem representation and on the range of
output values used: 5 _ ;00 Omax = Omin ZP:EN:(O g y? Where Opin and Oma are the

Np o
minimum and maximum values of the output coefficients used in the problem, N is
the number of output nodes of the network, P is the number of patterns in the data
set, o is the network output and tr is the target value.

The Generalisation Loss (GL) at epoch t is defined as the relative increase of the
validation error over the minimum so far: GL(t)=100.[ EL((tt)) _IJ, where E,(t) is the

opt
current validation error and the value E,(t) is defined as being the lowest validation
set error obtained in the epochs up to t: Eop,(t)=r:‘121Em(t'). The GL value

represents a measure of the level of overfitting performed by the network [6].
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Training progress P [6] is measured after a training strip of length k, which is a
sequence of k epochs numbered n+1,...,n+k where n is divisible by k:

Zra-m..: En(t) _

Pk(t)=1(X)O.[ . 1], where E, is the training set error. In the
Mg gy g Ep(8)

experiments detailed in this paper k=5. The training progress gives the extent of the
difference between the average training error in the strip and the minimum training
error and is used to determine when the network has reached a point where no
further training is effectively taking place. In the experiments performed in this
paper training is halted when the progress P drops below 0.1. This is consistent with

the approach taken in [6].

4. Experiments

Each MNN is trained using a set S derived from backtracking on a particular
problem. The networks trained using these MNN to suggest parameter values are
known as ‘Thyroid MNN’ (i.e. the MNN was trained using results obtained from
training on the Thyroid problem), ‘Building MNN” and ‘Soybean MNN’.

In the experiments ten networks were trained using the standard RPROP method
(M = 0.5) and RPROP using 1" values that have been determined as optimal from
previous experiments, these values are: " = 0.3 for the Thyroid problem, 0.5 for the
building problem and 0.7 for the Soybean problem. A similar number of networks
which used different MNN were trained for comparison. All initial learning rule and
network architecture parameters were fixed apart from the initial weight set which
was random for each network. The average of the results and the standard deviation
is presented in tables 2, 3 and 4.

5. Results

Tables 2, 3 and 4 provide the results for the experiments, each table gives the
result for a particular benchmark problem. The columns in the tables contain the
average results for the training, validation and test sets at the cessation of training,
the standard deviation for the results is included in brackets. The ‘Nr. of Epochs’ is
the number of epochs at the cessation of training. The ‘Last GL’ column provides
the final generalisation loss measurement, this indicates the extent to which the
network is overfitting. The rows give the result for ‘normal’ RPROP (i.e. N = 0.5),
‘optimal” RPROP (i.e. using optimal values for ) and the results for the MNN
aided networks.

Training | Validation Test Nr. of Epochs| Last GL
Normal RPROP | 1.17 (0.99) 1.59 (0.93)] 1.58 (0.90)| 7258 (2786){ 112 (137)
Optimal RPROP 0.6 (0.22)] 1.01 (0.2)] 1.12 (0.25)] 4344 (2963) 24 (22)
Thyroid MNN 0.25 (0.07)| 0.78 (0.13)} 0.86 (0.15) 967 (311) 14 (5)
Building MNN 0.18 (0.04)} 0.83 (0.08)| 0.83 (0.05)] 3616 (1624) 22(11)
Soybean MNN 0.27 (0.08)| 0.85(0.13)] 0.81 (0.11)] 1305 (641) 20(12)

Table 2: Results for experiments on the Thyroid problem.
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For the Thyroid benchmark (table 2) the best performing network is one which
uses a Building MNN to suggest alterations of 17, the second best is one which uses a
Thyroid MNN and third is a network which uses a Soybean MNN. The errors for all
three MNN are 30% lower than the optimal RPROP and are 50% lower than the
errors obtained by normal RPROP. The standard deviations are also lower for the
MNN. Each MNN aiso takes less epochs on average to reach the end of training and
when training is halted the MNN trained networks overfit less.

Training | Validation Test  |Nr. of Epochs| Last GL

Normal/ Optimal | 0.069(0.006)| 0.72 (0.09)| 0.53 (0.02) 662 (319)] 31.2 (87)
RPROP

Thyroid MNN 0.069(0.002)] 0.68 (0.07)| 0.53 (0.02) 897 (212)] 2.5 (2.6)

Building MNN 0.070(0.003)| 0.66 (0.07)] 0.52 (0.02) 877 (278)] 4.9 (4.6)

Soybean MNN 0.071(0.003)| 0.65 (0.06)] 0.52 (0.01) 832 (294)| 2.8 (3.2)

Table 3: Results for experiments on the Building problem.

In the table of the results for the Building problem (table 3) the results for the
optimal RPROP in are the same as those for normal RPROP since the optimal value
of " was found to be 0.5. The best result is obtained using a Soybean MNN, the
second best uses a Building MNN and the third uses a Thyroid MNN. The MNN
errors are on average 10% lower than using a conventional RPROP method.

Training | Validation Test Nr. of Epochs| Last GL
Normal RPROP 0.01 (0.01)] 1.09(0.15)[1.19(0.17)] 3988 (2380)] 113 (66)
Optimal RPROP 0.01 (0.01)| 1.09(0.18)[1.21 (0.13)] 3666 (1279)f 144 (77)

Thyroid MNN 0(0)| 0.39(0.03){0.61 (0.06)] 3361 (870)] 7.7 (10.7)
Building MNN 0(0)] 0.39 (0.04){0.63 (0.03)] 4046 (1415)] 16 (9.6)
Soybean MNN 0(0)] 0.41(0.05)0.61(0.05)| 3861 (1225)] 7.6(8.6)

Table 4: Results for experiments on the Soybean problem.

For the Soybean problem (table 4) the best result is obtained using a Thyroid
MNN, second is a network using Soybean MNN, and third is one using a Building
MNN. The errors for all three MNNs are only half those obtained using a
conventional RPROP algorithm.

For the three benchmarks used the top three performers are always MNNs even
though the RPROP algorithm is one of the best learning rules and the " parameter
has been tuned for each particular problem. The standard deviation is also lower for
all the MNN trained networks indicating that the MNNs are more consistent
performers.

6. Conclusion

A Meta Neural Network is a way of acquiring and using information about the
learning mechanism of a neural network. In this paper we have seen that a MNN
trained using knowledge derived from an unrelated problem domain can outperform
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a learning rule which has had the optimal 1 parameter for that problem domain
preselected by trial and error. The advantage of a MNN scheme is that a MNN’s
effectiveness on a problem is independent of the MNN’s original training problem
and its associated architecture. MNN’s can thus be trained once and used
successfully on different problem domains. While a MNN may not always
significantly outperform a conventional learning method it fares no worse and when
it does perform well the benefits are significant. This approach compares favourably
with the more usual approach of developing more general learning rules which may
not be optimal for every type of problem, developing specialised learning rules which
are only suitable for specific types of problem and using ad-hoc methods of tuning
parameter values.

This paper shows a successful approach to adaptation of the 1 parameter of the
RPROP learning rule and complements previous work [5] which has shown success
with the Quickpropagation learning rule. To improve the capabilities of neural
networks it may be worthwhile considering the incorporation of parameter adapting
MNN’s into learning rules so they can be more flexible, more generally applicable
and produce a better quality solution.
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