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Abstract: In this paper, a novel neural network architecture designed for pattern
classification purposes is presented. The classifier is a two-layer neural network.
The first layer classifies the input vectors into a number of clusters using a
stochastic competitive learning algorithm. The output of this layer is a Gibbs
probability distribution for the association of the input with these clusters. The
output of the first layer is used as input to the second layer that implements a
classifier similar to the Bayes minimum risk classifier. A new complementary
Hebbian learning algorithm is proposed to train the second layer. Computer
simulations have been performed and the results demonstrate that the new classifier
consistently provides high correct recognition rates and is competitive to other
similar systems.

1. Introduction

One of the most popular application areas of neural networks has been pattern
recognition. Many researchers have shown the effectiveness of the multilayer
feedforward networks in many pattern recognition tasks. However, the learning
process of backpropagation algorithm is very slow, in addition, it is very difficult to
interpret the outputs of the hidden layer units. In this paper, we present a novel
neural network architecture. Experimental results are used to show that the new
system has a fast convergence rate and can provide high recognition performance. It
is also shown that the new system is competitive to other neural models.

2. Minimum risk classifier neural network

This is a two-layer neural network. The task of the first layer is to classify the input
into a number of clusters and produce as its output a Gibbs probability distribution
for the association of the input with these clusters. The task of the second layer is to
decide the class of the input vector according to a minimum risk principle similar to
that of Bayes classifier. A schematic diagram of the network is shown in Fig. 1.

Fig. 1. A two-layer neural classifier
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Let W, = (W,;, W,;,***, W); ) be the connection weight vector between input layer
and the ith unit in the hidden layer, Z, = (/,,,L,;,--+,1,;) be the connection weight
vector between hidden layer and the ith unit in the output layer. Let

P =(p,, Py, "> Dsy) be the hidden layer output vector and € = (¢, C,,-*,Cy )
be the output vector. The operational equations of the network are as follows:

o Pl ‘
PEE s M
35 s
j=1
where || . || is the Buclidean norm, 3 > 0 is an “annealing factor”.
1 ifo(Ip")<c(l.p"), forj=12,- . Kandj#i _,.
c = . J Vi )
10 otherwise
where G(z)=_—= is the transfer function, T represents transposition. The

network classifies the input vector belongs to class i if and only ifc;, = 1.

2.1 Gibbs distribution clustering sublayer

We can view Eq. (1) as the Gibbs probability distribution [1] for the association of
the input vector with the M clusters. Therefore, we call the first layer the Gibbs

distribution clustering sublayer. The cluster centre vector of the ith cluster is W,.

The training task for this layer is to estimate these M cluster centres. Whilst there
are many clustering techniques , such as the K-means algorithm [2] and Kohonen’s
learning vector quantization (LVQ)-[3], can be used to calculate the cluster centres,
we present in this section a robust clustering algorithm [4]. The method is called
Stochastic Competitive Learning Algorithm (SCLA) and is briefly described as
follow

1. Initiatise W,(0),fori=1,2,"", M, set B = B(0).
Update all weight vectors according the following equation
J
wi(t +1) = W,(6) +7 (1) p,(k)(E (k) - W(1)) Vi 3)
=1
where p,(k) is the ith hidden unit’s output when the kth training vector
X (k) is presented to the network. J is the total number of training samples.
3. Increase B,if B(f) <P, , g0 to 2, otherwise stop.

The algorithm starts at a small value of [, for which p,(k) is approximately
uniform. That is, at the early stage of the learning process, there is not a definite
winner. As learning progress, 3 is gradually increases and the output of the units
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P, (k) begins peaking up around the Euclidean winner. In time, the units which are
closer to the input will have a larger output, whilst those units which are far away
from the input vector will have a smaller output. In the limit 3 — oo, for each
input vector, only one processing unit will have its output equal to one, all the others
will have their outputs equal to zero, i.e. the network becomes a winner-take-all
network.

In SCLA, the weight vectors are updated in a bafch mode, that is, the weights are
updated after the entire set of training samples are presented to the network; this
operation, as opposed to the on-line updating mode, can eliminate the effects of
different orders of input sequence on the final results.

Before implementing the SCLA, there are several parameters have to be decided.
First, the initial annealing factor [3(0). There exists no theoretical guidance of
choosing this value. This value can not be set too high or too low. If it is too low, all
the processing unit outputs will be equal to one another, the weight vectors may
group together, thus resulting in poor solutions. Conversely, if it is too high, the
annealing process may not be effective. Through experiment, it was found that the
average squared Euclidean distance between all the sample points and their centre
was a good candidate.

1 1< 2 ’
—— == |x(k)-C e))
O 2| |i
J
where C = %2 X (k) is the centre vector of all the training samples
k=1

Secondly, we have to decide a scheme for increasing 3 . For simplicity, a so called
“conceptually simple” cooling schedule given by: (¢ +1) = LOSB(¢) is adopted
[4].

Another important issue is to choose a scheme for updating the leaming rates. A
commonly used approach [1] is to start from some chosen values of the learning
rate, and gradually reducing them during the learning process. One suggestion of
choosing the learning rate values by Grossberg is as follows: if a given unit wins the
competition frequently, its learning rate should be reduced; conversely, if a given
unit wins less frequently, its learning rate should be increased. Following this
suggestion, a choice of the learning rates for the SCLA can be set as follow [4]:

1 J
—— =Y p.(k,1) for j=12,n ®
¥4(1) kz=; :

where p,(k, 1) is the output of the hidden unit / at time #.
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SCLA is a robust clustering algorithm in the sense that the final cluster centres
obtained are not dependent on the initial weight vectors. In our present application,

the stopping criteria Bmax determines the “fuzziness” among the clusters.
2.2 Complementary Hebbian leaning for minimum risk classification

In the classical Bayesian approach to pattern recognition, the starting point is the
definition of a decision function for each of the all possible classes. Let d,(¥(k))
be the decision function for class ¢, The Bayes’ decision rule decides X(£) belongs
to class ¢, if and only if d;(X(k)) <d,(X(k)), forall i # j. In principle and in
practice, the decision functions d,(X(k)) is some functions of the a posteriori

probability measures, p(ci|f(k) ,fori=1,2, .., K Such a classifier is known as
the Bayes minimum risk classifier [5].

The task of the second layer of the network is to decide the class of the input vector.
To achieve this aim, we implement this layer following a similar approach to that of
Bayes minimum risk classifier. We view the output of the second layer as an
estimation of the a posteriori probability distribution measures. However, in our
present system, the number of hidden units and therefore the number of the a
posteriori probability distribution measures does not have to be identical to the
number of classes, whilst in Bayes classifier each class has a corresponding the a
posteriori probability distribution measure. In addition, we do not have to know
explicitly the relation between the hidden layer units and the class patterns. We

view © (i jﬁT) as the risk undertaken in deciding the input belongs to class j. The

learning process has to achieve the aim that & (/ jﬁT) is the smallest when the

input comes from class j. To do this, we propose in this session a complementary
Hebbian leaming algorithm as described below: Forall j=1,2, .., Kandi=1, 2,

.s M, we set the initial weights /;(0) = 0, the connection matrix is updated as

If X(t) eclassj: I;(t +1)=1;(1)-Mp;-© (ijﬁT (D)o (l_jpT) 6)

If %(¢) g classj: L;(t +1)=1(0)+&(p, s (LP ;O I,BT) O
where A and € are learning constants and A > & . Clearly, equation (7) is a
modified version of Oja’s Hebbian rule [1] (non-linear output units are used here
whilst the original Oja’s Hebbian rule uses linear output units). Equation (6) is the
anti-Hebbian leamning counterpart of (7). We therefore call the algorithm
complementary Hebbian learning.

The basic idea behind the algorithm is: If x(f) €c;, we want to make o(l Ph)
the smallest. The learning algorithm uses (6) to decrease G (I j]_?T) and (7) to
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increase o ([p"), for i=12,--- K, i # j. The training is completed when no
improvements in the number of correctly classified vectors are achieved by further
iterations. Theoretical analysis of the properties of the algorithm has yet to be
conducted at this stage. However, extensive simulations have shown that the
algorithm always converges within a small number of epochs.

3. Simulation results

The experiment is performed on a non-separable problem taken from Kohonen [6].
The data are drawn from two concentric two-dimensional Gaussian distributions,
each with zero mean. The co-ordinates are independent for both classes with a
variance of 1 for class 1 and a variance of 4 for class 2. These distributions overlap,
so no classifier provides perfect classification. The optimal Bayes minimum risk
classifier will classify 73.624 % of vector correctly on average.

We use a set of 10,000 random vectors as training samples and another set of 10,000
random vectors as test samples. A network with two input, 32 hidden and two output

units is trained. Different values of 3 have been tried in the training of the first
layer. Table 1 shows the results of ten simulations. Also shown in the table are the
number of epochs used to train the first and second layer. The training rates are set
as A = 0.005 and £ = 0.0005.

TABLE 1 PERCENTAGE OF VECTORS CORRECTLY CLASSIFIED

B Training set | Testing set | No. of epochs | No. of epochs

max (% correct) | (% correct) (first layer) (Second layer)
1.71 73.68 73.02 46 6
1.80 73.58 73.13 47 6
1.89 73.53 73.05 47 6
1.98 73.60 73.07 48 6
2.08 73.53 73.15 49 7
2.18 73.50 73.11 50 6
241 73.44 73.18 52 7
2.52 73.36 73.18 53 7
2.79 73.36 73.08 55 S
3.23 73.46 72.95 58 5
average 73.504 73.092 51 7

The values of __, are determined through experiment. The overall trends are, for
smaller 3 (the clusters in the first layer are “fuzzier”), the correct recognition

rate is higher for the training data, whilst for larger B __  (the clusters in the first

layer are “less fuzzy”), the correct recognition rate is lower for the training data.
The best generalisation capability (the highest correct recognition rate for the testing

data) is achieved at a compromise, i.e. at a middle 3 value.
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A neural network model proposed by Spetch [7], the so called probabilistic neural
network (PNN) follows closely the principle of Bayes classifier. In fact it is more
appropriate to consider PNN as a method of estimating the a posteriori probability
distribution measures instead of a neural network. We have implemented PNN on
the same data sets. Table 2 shows ten best results obtained on the testing set, where
o is the standard deviation of the Gaussian function used to estimate the probability
measures [7]. The average correct rate is 73.116% which is 0.0018% higher than
that obtained by the new method. Although training of PNN is one pass process, the
computational load in the operation stage and memory requirements are
proportional to the size of training samples. Therefore, PNN is considerably more
computationally intensive and requires more memory space than the new method.

TABLE 2 PERCENTAGE CORRECTLY CLASSIFIED VECTORS BY PNN

s | 0187 | 02 | 0212 | 0224 | 0.316 | 0.387 | 0.447 | 0.5 0.548 | 0.592

% | 73.02 | 73.11 | 73.14 | 73.17 | 73.27 | 73.13 | 73.20 | 73.06 | 73.05 | 73.01

We have also implemented Kohonen’s learning vector quantization classifier on the
same sets of data. Different network size have been tried many times. The best
results obtained are 73.05% correct recognition rate for the training data and 72.79%
correct recognition rate for the testing data.

4, Conclusion

In this paper, a novel neural network classifier designed based on two learning
algorithms, an unsupervised competitive learning and a supervised Hebbian leaning
has been described. Simulation results are presented which indicate the network has
a fast convergence rate and is competitive to other similar models.
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