ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 79-84

A Self-Organizing Map for Analysis of High-
Dimensional Feature Spaces with Clusters of
Highly Differing Feature Density

Stefan Schiinemann, Bernd Michaelis

Otto-von-Guericke University Magdeburg
Institute for Measurement and Electronics
P.0. Box 4120, D-39016 Magdeburg, Germany

Abstract. Self-Organizing Feature Maps (SOFM) facilitate a reduction and
cluster analysis of high-dimensional feature spaces. One property of these
artificial neural nets is a smoothing of the input vectors and thus a certain
insensitivity to outliers and clusters of low feature density. While classifying
clusters of highly different feature density this property is undesirable. This
paper introduces an algorithm which makes a projection of low feature
density clusters onto a SOFM possible, too. The resulting weight vectors
represent reference vectors of all clusters.

1. Introduction

The theory of Self-Organizing Feature Maps (SOFM) facilitates a reduction and
cluster analysis of high-dimensional feature spaces onto two-dimensional arrays of
representative weight vectors. The smoothing of input vectors is a basic property of
the projection of the feature space onto the SOFM. Therefore the feature map is
relatively insensitive to outliers in the learning set.

During classification clusters of different and in some cases low feature density may
be encountered. Due to the averaging property, these will not necessarily project
onto separate clusters on the SOFM. The weight vectors of the representing neurons
cannot be considered as reference vectors for clusters of low feature density. This
can be attributed to the strongly dissimilar probabilities during random selection of a
feature vector from the individual clusters of differing feature density [2]. In the
case that the cluster of low feature density represent significant qualities of the
distribution, the smoothing property is highly undesirable. Such feature distributions
are well-known from classification tasks in science and medicine.

Classical methods for the detection of these clusters, such as outlier tests, are
cumbersome and inefficient in a high-dimensional feature space. This raises the
demand for the development of a learning algorithm, which facilitates a separate
projection and whose weight vectors converge towards those clusters and therefore,
represent reference vectors.

In the following a training algorithm will be introduced that is derived from the
basic SOFM method and satifies the requirements mentioned above.
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2. Basic Method of the SOFM

‘The m-dimensional weight vectors w(x,y) of the neurons of the Self-Organizing
Feature Map are randomly initialized in the beginning of the training phase. In each

training step, a feature vector v € R is chosen from the learning set with a certain
probability. Each neuron calculates its Euclidean distance to the presented vector:

dy(x,y>=Jﬁ;[v(k)-wxx,y,k)f o

=1

The weight vectors of the winner neuron ny, (the neuron featuring the minimal
distance), and its coupled neighbors Dy are updated according to the following
rule:

wi+1(x7 ys k) = wi(x’ y, k) + o; @ i(x’ y) [V(k) - Wi(X, Yy k)] » k=1.m (2)

in the direction of the feature vector v.

Here, the learning rate o determines the magnitude of the update. It has to be
defined as a with increasing training steps monotoneously decreasing function,
which asymptotically approaches o=>0. Its initial value has to be set at the
initialization of the SOFM in the range a(i=1) € [1,0).

For the following derivation the neighborhood distance D is defined as the Vector-
or Manhattandistance between the neuron position x, y. Further the neighborhood
radius r is assumed as monotoneously decreasing with increasing learning step. In
SOFM with up to several hundred neurons the neighborhood function @ may be
defined in a simple way. Each neuron with r<D is assigned the value @=1. The other
neurons are not regarded as coupled with the winner neuron and thus, are assigned
@=0. In larger SOFM, a Gauss-shaped neighborhood function is commonly used [1].
During the first training epochs the initial order of the map will be established. With
progressing training, the effect of the winner neuron on its neighbors decreases and
thus, the adaptation in the direction of the feature vector is diminished. At this stage,
the training process has reached the phase of asymptotic convergence. The learning
rate o and the neighborhood function ¢ are of essential importance for the
convergence of the algorithm, i.e. a suitable representation of the feature space by
the weight vectors of the map [3].

3. Modifications of the Basic Method

From the literature, several modifications of the learning algorithm towards an
optimization of the convergence are known (e.g. [3], [4]). In this paper, the goal of
the modification of the algorithm consists in a change of the neighborhood function
@ in such a way that it effects the convergence for fulfilling the task explained in the
introduction: the update of the winner neurons in the direction of vectors of low
feature density shall be strengthened. The modified neighborhood function ¢ will be
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noted as @*. An idea concerning the initialization of the SOFM will be used for the
description of the partial space of the n-dimensional feature space which utilizes the
principal components analysis ([S], [1]) and defines a hyper-ellipsoid y with the
eigenvalues Ay of the feature distribution as its half-axes:

’ 2 ' 2 ! 2
y oYW VO YR 3)
)\.1 )\-2 )\'k

where v' are the feature vectors transformed using the eigenvectors.

The main purpose of the modification of the neighborhood function in Eq.(4) is the
definition of a function, which in contrast to the basic algorithm more strongly
differentiates the degree of coupling of the neighboring neurons with the winner
neuron. If the neuron is the winner neuron ny,, then simply results @* = 1. Aty > 1
(outside the hyper-ellipsoid Eq.(3)) cp* is additionally affected by the term § (see

Eq.(5)).

1, n :dy(x,y)= min.

P, (X,y)= ?I—)I?’T’ nyy :1(i) 2 DRy @
Xy
0 ,else

Fig.1 schematizes the relations in the feature space. d(nxvyv,M) and d(v,M) describe
the distance of the weight vectors or the feature vectors, respectively, from the
hyper-ellipsoid introduced in Eq.(3). Fig. 2 exemplifies the function @* for the
coupled neighborhood neurons for the vector distance. Modification occurs
depending on the current feature vectors in the training epoch i.

@* conjointly with the learning rate o determines the magnitude of the update for

the weight of the neurons, where the term B (see Eq. (4)):

V2 st()st(i=1)
1, [r(i)=z]<r(i)<J—2_ :odyp =dy |y st
B = 1(ipee) s 1d)s[r)=2] : v sl ©)
o else
e10-&1*’12‘”!—

depends on the three stages of the modified training algorithm:

initialization: 2 s1(i)<r(i=1)
orientation:  [1(i) =z]< (i) < ¥2 , AZ<zst(i,) (6)
convergence: (i, ) s1(i)s [r(i) = z]

Threshold z sets the beginning of the convergence stage.
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Fig. 1: Feature space Fig. 2: Neighborhood function ¢*

During the initialization of the training (B = 1) the inital order of the SOFM is
established. The relation 1/(2*D) causes a non-linear variation of the neuron's
weights in the direction of the feature vector. Using an adequate initial distribution
to pre-orientate the neurons, the number of training epochs for this phase can be
greatly reduced. There is no differentiation of the partial spaces y < 1 and y > 1
during this stage of training.

The orientation phase serves the further adaptation of the weights to the feature
clusters within the hyper-ellipsoid y < 1 and suppresses a contraction of the map into
the ellipsoid. There is no additional limitation on learning in the partial space y < 1.
A second intention for this phase for y > 1 is the development of neurons, which are
supposed to converge in the direction of the clusters of low feature density. The
neighborhood neurons with y > 1 and whose winner neurons nyy is pulled by the
feature vector v towards the hyper-ellipsoid, experience an additional limitation of
their adaptability through factor B (see Fig. 1). For a measure, the shortest Euclidean
distance of the respective weight vector to the ellipsoid is used, i.e. the length of the
normal to the tangential hyper plane of the ellipsoid to the end point of the weight
vector. Because of the high computational load, this is simplified to the length of the
straight d(ny,,M) to the point of penetration in the direction of the center of gravity
of the distribution. This length is normalized with the maximum distance d(v,max)
of the feature vectors. This normalized distance g is the power in the empirically
found function 1/e104.

In the third phase of the training process the neuron weights converge for a cluster
within y s 1. Outside the hyper-ellipsoid individual neurons will be updated in the
direction of clusters of low feature density, they also converge and thus represent
reference vectors. This is achieved mainly by means of a limited adaptability of
winner neurons with learning rate o in the direction of those clusters and the
limitation of the term aq under increasing influence of the factor f for those
neurons, which become neighborhood neurons and are found outside and in the
direction of the hyper-ellipsoid.
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4. Applications of the Modified Algorithm

The performance of the described neighborhood function ¢" for a cluster analysis
and classification is to be tested with an investigation of the self-organization during
the growth of crystals of semiconductor nanostructures [6] and the detection of
highly complex combination patterns of cell surfaces in the immun system [7][8].
Both projects are characterized by clusters with a low feature density which yield
important consequences in physics or medicine.

As the neighborhood radius

(i) = pP+t P;l 1, p=tms ( a ) n )

is applied.

The normalizing parameter a and the parameter b make a manipulation of the initial
value of the function r(i=1) and the steepness, respectivily, possible. At the start of
the training the SOFM is initialized in the direction of the two greatest eigenvalues,
i.e. variances, of the feature space [5]. So, the initial order of the map can be
achieved with a significantly reduced number of training epochs.

Fig. 3 shows the feature (*) and weight vectors (+) of the SOFM in a reduced three-
dimensional feature space for the classification of semiconductor nanostructures,
side-hy-side for both the Basic Method and the modified Algorithm. From the figure
it is evident that using the Basic Method, clusters II and III have been suppressed.

Cluster Analysis Cluster Analysis
with Basic Method with Modified Algorithm

Q)

Circularity C

Fig. 3: Feature and weight vector for the classification of semiconductor nanostructures
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Fig. 4: SOFM for several combination patterns of human antigen
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In Fig. 4 the result of the cluster analysis using the Modified Algorithm of a
similarly reduced four-dimensional feature space for several combination patterns of
extractad human antigen in the blood along with their percentage are presented.
Cluster with low percentages are suppressed by the Basic Method analog to Fig. 3.

5. Conclusion and Outlook

The applications of the introduced algorithm show that already with simple
modifications of the neighborhood function, i.e. the definition of a hyper-ellipsoid
around the center of gravity of the feature distribution and the consequently defined
neighborhood function, the convergence of the neuronal weights in the direction of
clusters of low feature density can be improved.

The expansion of the algorithm to cluster-dependent multi-layer structures in
connection with the definition of ‘several hyper-ellipsoids seems reasonable for a
further improvement of the convergence of the SOFM in a high-dimensional feature
space. The higher layers increase the resolution of the analyzed clusters.
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