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Abstract

This paper describes the application of a Neural Network based classifier system to
the control of a simulated organism or animat in a simple obstacle avoidance task. A
mechanism for concurrent exploration and exploitation of an environment based on
Kohonen Feature Maps is described and some initial results in a simulated domain
presented.

1. Introduction

The Hybrid Learning System (HLS) is an extension of the Classifier System
Architecture that embeds neural networks within each classifier to enable
environmental feedback to impinge directly upon the classifier population [2].
Expenments with HLS have focussed on the control of artificial organisms called
animats that interact with simulated environments by activation of external classifiers
(7]. The goal of the system is to enable the animat to achieve global problem domain
objectives by learning how classifiers behave during the exploration of the domain
and then evolving new classifiers that can optimize search in the domain state space
to discover goal states. Earlier work focused on the associative learning of global
objectives and unsupervised calibration of classifiers that emerged when the system
was used to control animats exploring open mazes [3][4]). More recent experiments
have introduced obstacles into these mazes and studied the resulting behaviour
patterns.

2. The Hybrid Learning System
2.1 Embedding Neural Networks in a Classifier System

Classifier Systems are message-passing, rule-based, self-organizing systems
employing a Genetic Algorithm (GA) as their main learning process [S). The

architecture of the Hybrid Learning System HLS (figure 1) is based on a classifier
system with embedded Kohonen Feature Maps [6]. These maps are self-organizing
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representing the environment state before and after classifier activation. HLS's
networks are self-organizing since no external critic is available to provide training
examples. The self-organizing process calibrates classifiers by adapting their
pre/post activation state vectors and eliminating redundant state data unaffected by
classifier activation.

2.2 Exploring mazes

A simple simulated control problem is presented here to illustrate the execution
cycle of HLS. An XY maze (32 * 30) is to be explored by an animat to reach a fixed
food source at X=27, Y=23. In this scenario the animat is configured with two
features - X location {X], Y location {Y} - and five classifiers - +X, -X, +Y, -Y,
<null> ( implying no movement).

The basic execution cycle of the system is -
(1) detection of current feature signals {X,Y) for all locations within sensory range.
(2) selection of candidate classifiers for each external target {X=27, Y=23}.
(3) application of classifiers to problem environment to generate a new object state.
(4) self organization of classsifier feature maps based on the object state pre and

post classifier application in (3).
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The resulting behaviour is
shown in figure 2 with the parts
of the maze visited by the
animat marked with gridlines.
The system has calibrated the
classifier population to move the
object from the start point (S) to
the target (G) despite the
presence of obstacles. Cali-
bration in this context means

that the X/Y classifiers have \
been correctly associated with S Exampie path Animat
the dimensions that they effect.

X

2.3 Coping with large obstacles Figure 2. Maze with 7 obstacles

The introduction of large obstacles into the domain can result in the animat
becoming stuck in local minima since the classifier selection process is essentially a
noisy hill climber working towards a fixed goal using strictly local information. The
noise in this context is introduced by inter-classifier competition which is a measure
of how efficient the system is in achieving its goals. Typical behaviour in a maze is
shown in figure 3. Open mazes (no obstacles) permit accurate classifier calibration
with rapidly decreasing competition indicating progress towards the goal The
introduction of obstacles into the maze does not prevent the system achieving the
goal but greatly increases the search time. A more serious hidden cost is the level of
inter-classifier competition which decreases initially but then rises as obstacles are
encountered. This in turn degrades each classifier's fitness ranking and reduces the
effectiveness of the GA-based Adaptive Strategy (sce figure I).

One approach to overcoming this problem is the online decomposition of the
problem domain space into a series of continous spaces that can be exploited by hill
climbing. A path network has been introduced into HLS to capture obstacle
boundary data and apply local search mechanisms to generate a series of achievable
subgoals from this structure,

3. Representation of obstacle boundaries

3.1 Architecture

The architecture of the path network (figure 4) consists of a fixed size, 3 layer,
ID Kohonen Feature Map with a standard input / output layer configuration and an
additional rehearsal layer. The purpose of the network is to capture nodes adjacent to
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obstacle boundaries and use these as primary training data for the output layer. This
data is also latched onto the rehearsal layer and replayed to provide continued
reinforcement when the animat moves into free space. The addition of a frequency
_counter on each node provides a ranking measure based on frequency of visitation.
The network can expand from a size of 2 to a size Pipax.

3.2 Mechanism

Training
(1) extract current boundary points from the animat’s sensory state S and place
onto input layer as vector set B.
(2) find best matching node on the output layer O for each boundary pointb in B
min i {llo - bll} Y ojin O
(3) increment frequency of visitation f counter of nodei - fj:=f; +1
(4) perform adaptation of node i and physical neighbours -
0 = 0j+ A2 « (0;-b)
where A123 equals fixed adaptation rate associated with Kohonen Mexican Hat
profile [6]. Note - there is no global attenuation of this profile.
(5) find best matching node on rehearsal layer R for each boundary point b in B
dr=min; {IIrj - b} VriinR
(6) if dr~ 0.0 (i.e new boundary point) then
(i) if network size = Pyyax then delete least recently visited node
(ii) insert new boundary point on layer R between points i and j given by -
min j {lfrj - bil}, minj<; (lirj - bli}
Rehearsal
(1) forall 0jin O-
0j = 0j+ Als (0 - 1))
where A lequals fixed adaptation rate associated with the first zone of the
Kohonen Mexican Hat profile. Note - normally nearest neighbours.
Searching and subgoaling
The network can be applied to the subgoaling problem triggered whenever the animat
moves adjacent to an obstacle. The basis algorithm employed is to attempt to subgoal
onto output layer nodes that best match the global goal G and current state S
attenuated by the frequency of visitation -
(1) insert goal G onto output layer O as node k between positions i and j given by
min j {llo; - glt} , min j; {lloj - gll}
with f = 0.5 » ({j + l'j)
(2) next subgoal gg is given by -
min { (loj - gll+lloj - sl * (1.00+£)} VoiinO
Note - the term f biases subgoaling away from frequently visited nodes.
(3) submit ggto Classifier feature Maps for hill climbing.
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(4) remove node k from path network.

3.3 Behaviour

The type of structure generated by the path network is shown in figure 5 with
path nodes denoted by ‘O’s. The effect on inter-classifier competition with the search
mechanism enabled is shown in figure 6. The animat is able to achieve the global
goal in approximately 126 steps compared compared with 476 steps with searching
disabled. The profile of competition is also improved with a downward trend
discernible after the initial calibration phase. Over repeated trials an animat applying
subgoaling was able to outperform an animat without by a factor of 2.5.

4. Conclusions

Two limitations are apparent at this stage of the research - the need for sensory
fields and the Euclidean representation of boundary nodes. The method requires that
the animat has a sensory ficld of at least one unit range to enable the boundary of an
obstacle to be identified. In contrast the Classifier Feature Maps are capable of
driving the animat towards the goal with only animat state data. Obstacle boundaries
are represented by their coordinates in physical space rather than by their relationship
to the sensory field. This implies that large changes to the domain require
considerable re-learning of the path network before subgoaling can be successfully
applied. The main strengths of the new approach are that it is robust in capturing new
boundary points and has scaled up to handling a moderate number of obstacles. In
addition it generates stable fitness values in the Classifier Feature Maps which allows
the GA-based Adaptive Strategy to function more effectively .
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