ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 303-308

Prediction of dynamical systems with
composition networks

Yves Moreau , Joos Vandewalle

Katholieke Universiteit Leuven, Elektrotechniek-ESAT,
Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium

Abstract. In this paper we study the problem of predicting dynamical
systems from discrete-time measurements of the state variables. Our
approach is based on the theory of Lie algebras and the Baker-Campbell-
Hausdorff formula. We present the composition network which is a multi-
layer architecture which can use the a priori knowledge we have about
the system. We also introduce the "MLP in dynamics space” which is
a general implementation of the composition network having a universal
approximation property. We demonstrate the efficiency of the proposed
method on the task of predicting the Lorenz attractor.

1. - Introduction

We study the problem of predicting nonlinear dynamical systems from discrete-
time measurements. The systems which we consider here are continuous-time
autonomous dynamical systems. This means that they can be described by
some ordinary differential equation £ = f(z) on the state-space. It is often the
case in practice that the system is observed at discrete-time intervals At only.
We will further assume that all the states variables can be directly measured.
The data is thus a sequence of states z(0),z(At),...,z(N.At). Under those
assumptions the system now takes a discrete-time form z(k + 1) = F(z(k)).
The purpose of learning is to determine an estimate for F'. This writes as:

N-1
F= min ) [IG(.AL) - (G +1).A0)]° (1)
GeM j=1

where M is some parametrized family of admissible models. The task of learn-
ing is then to determine an optimal F, that is a set of parameters which mini-
mizes the prediction error.
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The main drawback of using some class of neural networks as the class of admis-
sible models is that it can be shown [6] that these classes contain many models
which do not have the structure necessary for the prediction of any dynamical
system. The method we present answers these objections by providing models
whose structure is closely related to that of dynamical systems.

The first section of this paper presents the elements of Lie algebra theory, the
Baker-Campbell-Hausdorff formula and derives the structure of the composi-
tion network. The second section presents a general implementation of the
composition network called "MLP in dynamics space” which has a universal
approximation property in the space of dynamical systems. The last section
presents the results of the learning of the Lorenz attractor with this method.

2. Lie algebra theory

Lie algebra theory has a long history in physics, mostly in the areas of classical
mechanics [1] and partial differential equations. It is also an essential part of
nonlinear system theory [3]. Our approach to system prediction can be best
cast in this framework.

The first element we need is the notion of the exponential map of a vector field.
Suppose a system of the form £ = A(z) where A is some vector field defined
on the state-space. The solution of the initial value problem is denoted by:

y = e @)

This can be read as: "y is the image after time ¢ of the initial condition zg
under the flow of £ = A(z)”. Although this notation is also valid to the linear
case, the exponential e**4 is in general a nonlinear map from the state-space
onto itself.

The other notions we will need are these of Lie algebra and Lie bracket. A
Lie algebra is a vector space where we define a supplementary operation: the
bracket [.,.] of two elements of the algebra. The bracket is an operation which
is bilinear, antisymmetric and satisfies the Jacobi identity [1]. One can then
define the Lie bracket by:

_ 62 -s.B ,~t.A _s.B _t.A
[A, B] = m t:szoe N .e . (3)

Here the product of exponentials denotes the composition of the maps. When
the state-space is R™, analytical expressions for the bracket can be found [1].
2.1. The Baker-Campbell-Hausdorff formula

The Baker-Campbell-Hausdorff (BCH) formula gives an expansion for the prod-
uct of two exponentials of elements of the Lie algebra, see [4].

eA 6B = gA+B+EABl+&((4[A,B)~[B,[BAD+.. @)
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The problem of predicting a dynamical system with vector field X then be-
comes that of building an approximation for e2*X as we have that z(k +1) =
edt.- X z( k).

This problem has recently been the focus of much attention in the field of
numerical analysis for the integration of differential equations [4] [5]. Suppose
that the vector field X is of the form X = A+ B where we can integrate A and
B directly. We can use the BCH formula to produce a first-order approximation
to the exponential map:

BCH : eAt.X = eAt.A_eAt.B + O(Atz) (5)

This is the essence of the method as it shows that one can approximate an
exponential map (that is the map arising from the solution of an ODE) by
composing simpler maps. By repeated use of the BCH formula, we can show
that the following leapfrog scheme is second-order. Using this leapfrog scheme
as a basis element for further leapfrog schemes, Yoshida [8] showed that it was
possible to produce an approximation to e2*X up to any order. Forest and
Ruth [2] showed that approximations could be built for more than two vector
fields. Combining this we can state that it is possible to build an approxima-
tion to the solution of a linear combination of vector fields as a product (i.e.
compositions) of exponential maps.

X=3r a4 (©)
= El’wij . gALX — H?:l H?_-l ewii-AtAi 4 O(Atp+1)

Suzuki and Yamauchi [7] have further shown that some schemes could be guar-
anteed to converge for arbitrary value of At.

2.2. Example

We briefly explicit the essence of the technique by looking at the Van der Pol
oscillator. This system can be written as a first-order system in state-space
form. It can be seen as a linear combination of two vector fields A, B which
can be solved analytically:

(2) B (liw) o ((()1-m2).y) = A+aB (V)

The flows of the vector fields X, A and B are presented in the following figure
(Fig. 1). Back to the system prediction problem, let us suppose we observe a
sample 7o and want to compute an estimate for a future sample z;. Consider
the first-order case, an estimate for z; is eAt*Belt-Ag,. As can be seen on
the next figure (Fig. 2), this corresponds to first following the flow of A for At
units of time, then following the flow of B for a.At units of time. This gives
an estimate for x;. This is not the only first-order estimate, we could also use
eAt-AgAt.aBy as an estimate for z;. By using more than two compositions
steps, we can build higher-order estimates for z;, hence more precise ones.
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Figure 1: flow of the Van der Pol oscillator and of its splittings.
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Figure 2: First-order predictions

Such an approximation scheme can be easily implemented as a multilayer
composition network (Fig. 3). The problem of predicting the system can now
simply be solved by minimizing the prediction error of the model by tuning the
weights w;; using some gradient-based optimization technique.

The most important feature of this method is that we are able to use the
a priori knowledge we have about the system. This is in contrast with neural
networks where it is difficult to incorporate a priori knowledge as it is a black-
box model.

3. MLP in dynamics space
If we decide to approximate the vector field of our system by a multi-layer

perceptron, one can also derive a composition network. The system is of the
form & = X (z) where:

X(z) =) &ob;z+bj)= Ay 5.(@) (8)
i=1 j=1

where o(z) = tanh(z) and Ej,i;j ERML j=1,..,n.
The differential equation & = o(z) can be solved explicitly in the one-
dimensional case. We can use this to explicitly integrate the multidimensional
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Figure 3: Implementation of the composition network.

system & = A_;(x) for any value of the parameters ¢;, gj. So, we can design a
network of the following form:

3k +1) = F(z(k)) = ewsA™™ g a™ My 9)

We call this an “MLP in dynamics space” as the MLP is implicitly used to
parametrize the vector field. As the MLP possesses universal approximation
properties in the space of vector fields, the ”MLP in dynamics space” will have
universal approximation properties in the space of dynamical systems.

4. Prediction of the Lorenz attractor

To demonstrate the efficiency of this method, we build a network and train it
for the prediction of the Lorenz attractor. The Lorenz attractor is of the form:

T - 0 0 x Ty
y{=]1 0 -0 @ y | + 0 =Cgpo+D (10)
z 0 p -1 z —yz

The linear vector field Cg,, » can be solved for any values of 3, p, o by exponen-
tiation of the matrix. The nonlinear vector field D can also be solved analyti-
cally. The training data consists in a set of 1000 data points z(k), y(k), z(k) on
a trajectory sampled at time-interval At = 0.01. The parameters 3, p,c have
values equal to respectively 8/3, 28 and 10. To build a predictor we consider
the parameters of the Lorenz attractor 3, p,o and the sampling-time At to be
unknown. We compare a first-, second- and fourth-order method [8].
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Table 1: Performance of composition networks

SSE B8 p o At
first-order 20.6819 3.1344 | 10.4087 | 27.5655 | 0.0092
second-order | 0.0177 2.6788 | 10.0767 | 28.1132 | 0.0100
fourth-order | 2.09.10~° | 2.6673 | 10.0019 | 28.0072 | 0.0100

We can see that the error (SSE sum of squared errors) can rapidly be made
small by increasing the order of the model. This guarantees an accurate esti-
mation of the parameters and a parcimonious parametrization of the model.

5. Conclusion

We have presented a multi-layer architecture for the prediction of dynamical
systems from discrete-time measurements. The method was derived from the
theory of Lie algebras. We presented an implementation which made use of a
priori knowledge about the system. We successfully applied it to the prediction
of the Lorenz attractor. We also presented a more general implementation
having a universal approximation property in the space of dynamical systems.
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