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Abstract. We study symmetries of feedforward networks in terms of
their corresponding groups. We find that these groups naturally act on
and partition weight space into disjunct domains. We derive an algorithm
to generate representative weight vectors in a fundamental domain. The
analysis of the metric structure of the fundamental domain leads to im-
proved evaluation procedures of learning results, such as local error bars
estimated using maximum-likelihood and bootstrap methods. It can be
implemented efficiently even for large networks. We demonstrate the
‘approach in the area of nonlinear time series modeling and prediction.

1. Introduction

Feedforward networks can be interpreted as a form of nonlinear regression.
They offer great flexibility at the price of a complicated structure. It is possi-
ble to use classical maximum-likelihood procedures or modern computational
approaches, e. g. bootstrap [2] to evaluate learning results. However, the usual
gradient-based parameter estimation, or, in the language of neural networks,
learning procedures, may get stuck in local extrema. In the case of maximum-
likelihood estimation of error bars, estimates at local maxima, of the likelihood
can be completely wrong. For bootstrap, local extrema lead to unnecessary
large error bars [5].

In order to exclude suboptimal maximum-likelihood and bootstrap estima-
tions we propose to use the location information of the weight vectors instead.
However, owing to a canonical symmetry group (Section 3.), the space of weight,
vectors has a nontrivial metric structure that is studied in Section 4..

Our approach to improve estimations of error bars exploits the natural met-
ric of a fundamental domain of the weight space with respect to the symmetry
group. We propose applying a clustering algorithm for the weight vectors in
this effective weight space using the metric given in Section 4. in order to obtain
several clusters of weight vectors. Simulations have shown that these clusters
refer to different types of maxima of the respective likelihood functions.
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2. Learning in a Statistical Context

The data are generated using a “true” model, i.e., a neural network with a
certain fixed weight vector w°. In the regression context, we assume “measure-
ment” errors, so the actual data are modeled using;:

Yi = OUbyo (Z;) + €5

where the errors £; are independent identically distributed. The training set D
is a multiset {(z1,41),...,(Zn,¥n)} of n such data pairs.

2.1. Likelihood

Given the distribution of the random variable ¢; and a certain weight vector
w, every data pair (x;,y;) has a probability density p(z;,y:;) and the joint

probability
Lp(w) := [ [ p(zi, )

factorizes by the stochastic independence of the errors. The function w +
Lp(w) is called the likelihood of w. Note that w — Lp(w) is not a density
because the integration over the weight space R¥ may lead to an arbitrary
value. Lp(w) describes how likely the data have been generated by w. Under
quite general assumptions, the weight vector

wn = argsup(Lp(w))
-~ w
that maximizes the likelihood is asymptotically (w.r.t. n) unbiased, consistent,
asymptotically efficient and asymptotically normal-distributed [7].

The maximum-likelihood estimation 0, may be obtained, e. g., by gradient
ascent in the likelihood, or in the logarithm of the likelihood.

2.2. Bootstrap Approach

The bootstrap method [2] is based on re-estimations of the parameter vector on
B bootstrap samples of the tra,mm% set The bth bootstrap sample is a random
multiset D** = {(z1%,41%),...,(z°,y2%)} drawn from the training data with
replacement, i. e., some of the original data pairs will not appear, and some will
appear multiply.

The standard error of a predicted value outy(x) is approximately given by

51 2 (outw.a(m) -= Z out gy (a:))

b’=1

~

where *® is the estlmated weight vector according to @*® = argsup(L D.a(w))
The w*!, .. B are realizations of the random bootstrap weight vector @*
It is also posmble to estimate confidence intervals using the bootstrap ap-
proach. Let out%. (x) be the a quantile of the empirical distribution of outyg«(z).
The approximate 1 — 2a confidence interval of a predicted value outy(x) is

[outg. (z), out,lb".“(:c)].
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However, to achieve good accuracy, many more bootstrap samples and elabo-
rate post-processing may be required. See [2] for details.

3. Symmetry Group of RF

Every transformation t: RE — RF of the weight space, which leaves the network
function invariant, i.e., out, = outy(,), indicates a symmetry of the weight
space. One kind of symmetry is quite obvious: The interchange of two hidden
nodes within a hidden layer does not change the network function owing to
the commutativity of the summation in the nodes of the next layer. Another
symmetry may be induced by a symmetry of the activation function. For the
sake of concreteness, we will describe the symmetry group for the very popular
feedforward networks.

3.1. Network Structure

The nodes of the network are addressed by numbers 0, 1, 2, etc., 0 being the
name of the bias node. All other nodes are divided into k > 1 hidden layers
L,,..., L, one input layer L, and one output layer L ;. Every layer is fully
connected to the next layer, which means that there is a weight w,; assigned
to every pair (a,b) of nodes from L; x L;4;,i=0,1,...,k. Hidden nodes and
output nodes have a bias weight termed w,,. All weights of the network form
a weight vector w € RE,

Each activation function f of a hidden layer node is assumed to be sigmoidal;
we require that every activation function exhibit the same type of symmetry
f(z) = e — f(—=z), where, e.g., e = 1 for the logistic function or e = 0 for
f = tanh. This class of networks is quite universal: choosing the activation
functions of the output layer as identity and using one hidden layer makes this
type of network an universal approximator [7].

3.2. Symmetries

There have been several attempts to analyze the symmetries of the network
function [6, 1]. We present an independent approach, in which the arising
symmetries are described and analyzed in terms of their corresponding groups,
see e.g. [3)].

Let (M) denote the permutation group of a set M. Bear in mind that every
permutation can be written in terms of transpositions. The transposition 7(a, 7)
of a node a € L; with its right neighbor node induces a certain permutation
m(a, 1) of the weight vector components, which leaves the network function out,,
invariant. This permutation 7(a, %) may be viewed as a linear operation on the
weight space R™, and is thus an element of the group GL(E,R) of all linear
functions R® — RE.

Fix i; the mappings 7(a, i) + 7(a, ) with varying a induce a monomorphism
(i.e., injective homomorphism) from X(L;) to GL(E,R). Let II; denote the
image of this monomorphism. II; can be identified with the group generated
by m(ai1,1),7(a2,1),..., i.e., with the smallest subgroup of GL(E,R), which
contains all 7{as,1), 7(az,1),...
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Further studies show that II; commutes with II; element by element if i # j.
The group II, which is generated by Iy, ... ,II, turns out to be isomorphic to

the direct product of Iy, . .. , IIx. In particular, IT has [L|!-...-|Lg|! elements.
Let w(b,i) be the subvector of w containing all weights that involve the
hidden node b of layer L;: @(b,4) = (Wob, Waybs Wasby- -+ s Wheys Whegs---)e @

and c are enumerations of the nodes in the layer L;_; and L;,, respectively.
The flipping of all signs of the components in the subvector @(b,7) can be
corrected by changing all bias weights of the nodes of the layer L;,, i.e., by
Woe; F Woe; + € - Wy;. This is induced by the symmetry f(z) = e — f(—x).

Let t,: R — RF denote the above linear operation (sign flip of all weight
components that deal with node b and correction of all bias weight in the
next layer) that leaves out,, invariant. Note that t; is idempotent, and thus
the group induced by ¢, is the cyclic group T := {1,%;} with two elements.
Verify that t, commutes with ¢, for all hidden nodes a, b and that no ¢, can be
expressed by any combination ¢,,,... ,t,, of other operations when all a; # b.
From this it can be deduced that the subgroup T, which is generated by all
the operations t3, is abelian and isomorphic to the direct product of all T. In
particular, T has 2!L1Y--ULx| glements.

Let S € GL(E,R) denote the group generated by II and T. By definition,
T is a subgroup of S. T turns out to be normal, yielding the result $ =
Tl = OT. It follows that each element s of the symmetry group S has a
unique representation s = m...mt with m; € II; and t € T. So far the
symmetry group S of the weight space has been identified as a certain subgroup
of GL(E, R).

As pointed out by [1] no analytic function other than an element of S can
represent a symmetry in this context. However, there exist a lot of discontin-
uous functions that give rise to a symmetry: Fix two hidden nodes a,b from
the same hidden layer. If the incoming weights of a coincide with the incoming
weights of b, then all corresponding two outgoing weights might be replaced
by their average value. These kinds of symmetries are probably not important
in practice as they live in hyperplanes of R® with zero Lebesgue measure. We
therefore exclude them from our studies.

3.3. A Fundamental Domain

S acts on RP in a natural way: distinct orbits S(w) = {z € Rf |z =
s(w) for some s € S} (with respect to the natural group action) partition RE.
There is an interesting open and convex set W of weight vectors which con-
tains at most one representative of every orbit such that S(W) is dense in RE,
Such a remarkable set is called fundamental domain and may be constructed
as follows:

Let ai,... ,al"L‘,, denote the nodes of hidden layer L;. Let w(b,1) < w(c,?)
denote the lexicographic comparison of two subvectors. As usual, this means
that w(b,?) # w(c,i) and that the first nonzero component of w(c, i) — w(b, i)
is positive. Then,

W= {weRF|0<ia},i) <. <(aly,,i) for all 1 <i <k}

is a fundamental domain (note that W is a cone with apex 0, i.e., cw € W for
all we W and ¢ > 0).
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Sketch of a proof: Applying T on W allows each first nonzero component
of all subvectors @(b,%) to change its sign, and applying II creates all possible
orders of the first nonzero components, thus removing any restriction given to
specify W except the condition that no subvector w(a, ) of w may vanish and
except that no two subvectors may coincide. Taking the closure removes these
conditions leaving RE.

Hence, it suffices to maximize the likelihood in W instead of the much larger
space RZ. Indeed, the idea of a fundamental domain is to define a convenient
nonredundant subset of R¥ with respect to S.

3.4. Algorithm for Representative Vectors

Let @ denote a weight vector resulting from some learning algorithm (or pa-
rameter estimation). Beginning with layer L;, apply the symmetry operation
t, of Section 3.2. whenever a bias weight of a hidden node a is negative until
all hidden nodes have nonnegative bias weights. Then, for every hidden layer,
apply permutation symmetry operations by interchanging subvectors of nodes
in this layer such that the bias weights of each layer are in a definite order
— say, ascending from left to right — thus arriving at a representative weight
vector r(w). Essentially, this is a simple sorting problem.

The function r:R¥ — RF as implemented by the above algorithm maps
onto a region W' O W. The difference W' \ W is caused by the algorithm’s
laziness of not doing a complete lexicographic comparison and by dealing with
weight vectors that have vanishing or coinciding subvectors. Fortunately, W'\
W has zero Lebesgue measure.

4. The Metric Structure of W

4.1. W as a Manifold

The space RF of weight vectors is highly redundant. Ideally, RE should be
replaced by the space M := (RF \ X)/S of distinct orbits, where X denotes
the set of weight vectors with a vanishing subvector or with two coinciding
subvectors of nodes in the same hidden layer. The division by the symmetry
group identifies all weight vectors which have the same network function. M,
in general, is then a curved manifold with singular points.

Here, the problem arises of how to define learning algorithms or statistics
in the manifold M, which has completely different geometric properties than
RE. Instead of bothering with questions like geodesics, parallel transport and
curvature, we propose learning in the flat space R? and mapping the learning
result to W.

In order to achieve a good clustering, the differentiable structure of M is not
necessary. All one needs is a metric to replace the standard euclidian distance
measure in present clustering algorithms.
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4.2, W as a Metric Space

One idea assigning a distance to two points in W is using the minimal distance
dg in RP of two points of their corresponding orbits:

d(z,y) := min_dg(s1z, s2y)
81,82€8

However, it turns out that the compatibility of dg with the symmetry group,
i.e., for all s € S it holds that dg(sz,sy) = dg(z,y), is a quite important
feature. If a metric dg in RF is compatible with S, then the computational
simpler expression

d(z,y) := mip dp(sz,y)

is a canonical metric in W. If the activation functions of the hidden layer
exhibit the symmetry f(z) = —f(—z), e.g. for the tanh function, then the
euclidian metricis compatible with S: all points of the orbit of a weight vector
w lie on a sphere with radius |w|.

However, if we use the logistic function for the activation functions, a sign
flip of a subvector causes bias corrections to be made in next layer. They change
the euclidian norm of the equivalent vector. Fortunately, there is a norm | - [g
in R® which induces a metric that is compatible with S. If only one hidden
layer is involved, one can choose

lwlp = géz}}{!wloo, |woa + Y, max(0,wea)|, [woa + Y, min(O,wca)I},
- ? celn c€ELly

where ||« denotes the maximum norm in RZ. The unit sphere in this peculiar
norm | - |g is distorted so that all points of an orbit of a certain vector lie on
the same sphere. The generalization to more hidden layers is straightforward.
This norm is a natural choice for a metric dg(z,y) := |z — y|g in R® when
dealing with the logistic activation function. The distortion of the unit sphere
reflects the preference of the logistic function for positive output values.

5. Simulations

We chose an application domain where a good assessment of uncertainty is
crucial: the prediction of time series in the financial markets. Decisions should
be based on correct estimations of error bars, or even more general, interval
predictions, because it is then possible to assess the risk involved. The smaller
the error bars are, the bigger the profit will be on average.

The actual time series we selected is a short term interest rate. Its prediction
is used to support traders in the forward rate agreement market [4].

5.1. Modeling, Refinement and Results

The time series was modeled indirectly as the difference between certain mar-
ket expectations in the past and actual rates at present; see [4] for details.
We used two-layer feedforward networks in a nonlinear auto-regressive setting.
Network inputs were past values of the series at specific time lags. Network
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Figure 1: Plot of hierarchical clustering (complete linkage method) of B = 100
bootstrap estimates of network weight vectors in time series prediction. Left
subtree corresponds to global minimum.

outputs directly predicted values in the future. A model selection resulted in
a feedforward network with 10 input units, 5 hidden units, 1 output unit, and
a time lag of 3 between past input values,

For time series, the method of least squares can still be applied to estimate
network weights. However, in contrast to ordinary nonlinear regression, it is not
directly equivalent to the maximum-likelihood method. Therefore, the boot-
strap_pseudo samples were generated according to the moving blocks method
[2]. The empirical distribution of network function outputs was used to esti-
mate a number of quantiles of the distribution. These in turn were evaluated
to estimate an empirical predictive density. Figure 2 shows a single predictive
density, in this example for 21 May, 1993. Surprisingly, it is a multi-modal
distribution, potentially caused by local minima in the network error function.

The complete analysis of symmetries, groups, fundamental domains and
metric spaces applies here, too, because we essentially use the same type of
network. If the deficiencies of the predictive distributions are caused by learning
procedures stuck in local minima, the clustering approach should help.

After application of the algorithm for unique weight vector representatives
(see Section 3.4.) resulting in a fundamental domain, a hierarchical clustering
algorithm (see Figure 1) uncovered the fact that only about 60 percent of the
bootstrap estimations corresponded to the global minimum in the network error
function. Bootstrap weight vectors not belonging to the global minimum were
excluded from the bootstrap process. The constrained bootstrap estimation
of the predictive density (Figure 3) is better localized and unimodal, which
improves the results of [4].

6. Discussion

A major drawback of popular learning procedures for feedforward networks is
that they are gradient-based. Therefore they may get stuck in local extrema.
In the case of maximum-likelihood estimation of error bars, estimates at lo-
cal maxima of the likelihood can be completely wrong. For bootstrap, local
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Figure 2: Simple moving blocks boot- Figure 3: Moving blocks bootstrap
strap results in multi-modal and wide estimates confined to global mini-
distribution for 21 May, 1993. mum by clustering procedure.

extrema can lead to unnecessary large error bars or unnecessary wide confi-
dence intervals. We propose to cluster weight vectors in a small, well defined
fundamental domain of weight space using its natural metric. In practice, it
is sufficient to use standard hierarchical clustering algorithms to discriminate
between “good” and “bad”. The method can be implemented efficiently even
for large networks and large datasets.
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