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Abstract. This paper shows how an important phenomenon found in
biological systems can be modeled by suited dynamics. This phenomenon
is the adaptation of the geometrical representation of the information
perceived by the visual system. The basic concept of the proposed model
are generalized receptive fields. Such receptive fields are characterized by
a set of parameters underlying dynamics on different time scales. The
performance of the model is demonstrated by comparison to results of
neurophysiological experiments. Examples are given how the proposed
model can be applied to a complex real-world task in image processing.

1. Introduction

In the last decades many models have been proposed to describe the mecha-
nisms of brain function. This ranges from explanations of findings from neuro-
physiological experiments to the design of artificial neural networks for special
tasks. The most common notion in all these approaches is the neuron, being
the central processing unit of either natural or artificial systems. Neurons re-
ceive signals from a certain set of other neurons that they are connected to.
Considering the visual system, the region in the visual field that a certain neu-
ron is sensitive for is called the receptive field (RF) of that particular neuron.
This notion can easily be generalized by defining a receptive field to be a re-
gion in any other cortical area that a neuron receives information from. Such
generalized RF can be characterized by its size and position. Biological experi-
ments have shown that these parameters change with time due to time-varying
stimuli.

We developed a model to describe the behaviour of receptive fields in terms
of these parameters. In the next section a short overview of the main concepts
of the model will be given. After that, the predictions of the model will be
compared to neurophysiological and both anatomical and functional findings.
Finally an application of the model to some technical problems is presented.
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2. Modeling RF-parameters

In this section only a short summary of the mathematical principles of the
model shall be given. The model is described in detail in [2]. The two param-
eters are expressed by differential equations on time scales 7 and 75 based on
the neuronal activity a in an area ¢. The RF-position E can be described by

<1+7'1%) é(a,y,t) = i/9(96',.1/) @',y t)dz'dy’
C1 Jag

-

+COGRF(a(t7 7:7 g(xl) y/)) (1)
with a center-of-gravity function
.z 1 - e
COGRr(alt,i, ) = 5 [ alt,i,Elan)E & 2
and the total activity
Q= [ alt,i,&(z,y))de. (3)
RF
The RF-size n is expressed by
-0 _ _}_ r 1o ’ gt
Tagn(@,yt) = 9(=',y") n(z',y") de'dy’ + constso
C2 Ja

+ constg - /a(t, i,z',y') DOG,(«',y') de'dy’. (4)

c1, C2, const<o and const~g are constants and G the neighborhood of the
neuron. The first main idea is that the parameter-values of a neuron should
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Figure 1: Result of position- and size-dynamics (see text).

be similar to the values of neighboring neurons. This is achieved by the first
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terms in the equations. The-second idea is the influence of the stimulus. The
position is determined so that the field drifts slowly to the point of maximum
stimulus intensity. The size-dynamic lets the receptive field adapt to the size
of the stimulus by weighting the stimulus with a Difference-of-Gaussian-shaped
function. Both dynamics yield a stimulus-driven representation of the visual
information. This is shown in fig.1: the top plot shows the presented stimulus,
the middle one the position of the receptive fields and the bottom plot shows
the field-size. It can be seen that the receptive fields concentrate in regions
with high stimulus amplitude and the field size corresponds to the signal size.

3. RF-changes at the scotoma

An important prediction of the model is that the RF-size increases when the
RF is positioned in a region without a stimulus. This is in good agreement
with findings of biological experiments as e.g. from Gilbert et al. [7, 10]
who examined the size-change of receptive fields of visual cortex neurons in
cats. They fixated the head of the animals and presented a time-varying visual
stimulus in the entire visual field except a small region where, starting at a
specified time, the stimulus vanished and nothing was displayed. This small
region hence acted as an “artificial scotoma” (the blind spot). The experiments
showed that the RF-size of neurons having their receptive fields in this regions
increased when the stimulus was turned off. This behaviour is also achieved
by the proposed model as is shown in fig. 2 for a one-dimensional example:
for a linear arrangement of 100 neurons a time-varying random stimulus was
generated. Starting at time step 9 the signal was suppressed for neurons 62
to 68 (top plot). After some time steps the RF-size in this region increased
(bottom plot). The time-course of the adaptation is shown in fig. 3.

4. Formation of maps

In the last section only the predictions of the model concerning the size of
receptive fields was discussed. Now we concentrate on the position: if it is
varied systematically, topology-preserving maps can be generated. Such maps
can be found in biological systems as well. Various publications have covered
the subject of cortical maps (see e.g. [5, 6, 8]). Although only in some cases
a functional interpretation could be made plausible, a map is an important
functional aspect of cortical as well as technical information processing and is
well suited to interpret complex stimuli or signals, respectively. It is especially
interesting to analyze the function of maps when dealing with time-varying
stimuli like moving patterns: due to warped representations of the perceived
image the trajectories of points are totally different to original ones.

Based on experiments of Allman and Kaas [1], Schwartz [9] modeled retino-
topic mappings in the striate cortex of primates by the complex logarithm
(“CLM” — the Complex Logarithmic Mapping, see fig. 4). This mapping has

213



ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 211-216

0.6
0.4
Stimulus
0.2
0.0l
0 20 40 60
RF-Size

o] 20 40 60 80 100

Neuron #

Figure 2: The RF-size increases in the region of the artificial blind spot (at
position 65).Top: stimulus. Bottom: RF-size.

the property of transforming radial structures to parallel ones. A stimulus
showing such radial structures is e.g. the visual impression resulting from lin-
ear movement of an observer in a stationary surrounding. If such a stimulus
contains nonradial structures as well, they originate from self moving objects.
It is an important and difficult task in technical image processing to detect
such self moving objects.

Obviously the use of a map as described above makes it much easier to
interpret this stimulus. Using the dynamics presented in section 2 a map having
the desired properties was generated. The systematic variation of RF-positions
leading to the results shown in fig. 1 used the activity a as input. So the input
signal itself could be approximated. If not the signal but rather properties
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Figure 3: The RF-size increases starting at timestep 9.
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Figure 4: Experimental and modeled mapping. Left: right hemisphere. Middle:
map as found in owl-monkey [1]. Right: complex logarithm.
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Figure 5: Transformation of a radial flowfield: vectors resulting from motion
of self-moving objects (bold vector) are easlily detectable.

of the mapped signal are used as input, a map specially suited to represent
these properties developes. The property used here to build a CLM-like map
was the degree of parallel orientation of transformed vectors. The result is
shown in fig.6: after 1500 time steps the mapping has developed from identity
(left) to a final state (right) with a higher density in the center and nonlinear
transformations in the periphery. By using this map qualitatively the same
results as when using the exact logarithm can be obtained.
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Figure 6: Formation of a map. Left: initial state. Right: final state.
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5. Conclusion

A dynamical model was presented that describes as well the behaviour of re-
ceptive fields due to stimulus changes as the formation of cortical maps. Com-
parisons with experimental findings were given and possible applications were
shown. The central notion of the model is a generalized receptive field which
is believed to be a powerful tool for both explaining certain aspects of natural
systems and solving complex problems in image processing. It should be men-
tioned that several applications for technical tasks using the presented approach
have efficiently been realized and will be published shortly. The intention of
this paper was to demonstrate the power of this approach to model biological
phenomena.
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