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Abstract. A biological or artifical agent operating in the real world must
have means to categorize its environment. Since the real world is dynamic
the problem arises how an agent can adaptively categorize non-stationary
input data. In this paper we address this stability-flexibility trade-off
using a mobile robot that has to solve a collecting task in a changing
environment. We demonstrate that by using a Growing Dynamical Cell
Structures algorithm the robot can incrementally learn categories.

1. Introduction

If a biological or artificial agent is to function in the real world it must have
means to categorize its environment. In previous work we have developed a new
approach to address the problem of adaptive categorization in mobile robots
([2},[4]). The main idea is to reduce the many degrees of freedom of the in-
put space by exploiting correlations through time-linked independent samples
of sensory stimuli and kinesthetic signals produced by self-motion. Thus, cat-
egorization is not seen as an isolated perceptual (sub-)system but rather as a
sensory-motor coordination. In these experiments a self-organizing map (SOM)
was used for the category learning. Here we extend this work by using a Grow-
ing Dynamical Cell Structures algorithm (GDCS) ([1]) instead of a SOM. The
main goal is to address the problem of categorization in a dynamic environment.
We use a GDCS network because it has been shown to have the same topology
preserving properties as standard SOMs ([3]) but in addition allows for incre-
mental learning of inputs with changing probability densities. This is a crucial
feature with respect to categorization in the real world: since the real world is
dynamic an agent has to be able to adapt to these changes without forgetting
what it has learned previously. In the experiments presented in this paper a
mobile robot has to learn to interact with different types of objects (see figure
1). Mixtures of new and already learned objects are successively presented to
the robot. The robot has to learn the new objects while not forgetting the ones
already encountered, i.e. it has to solve a stability-flexibility trade-off.
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Figure 1: The robot used in the experiments is a Khepera™ | Tt is equipped
with eight IR sensors, six in the front and two in the back. The arm is moved by
a DC motor coupled with a position sensor. Objects inside the gripper can be
detected by an optical barrier that is mounted on the gripper. Two conductive
surfaces on the gripper allow to measure the electrical conductivity of an object.
The robot’s task is to collect small non-conductive objects (small black circles in
the figure), to push intermediate sized conductive objects (indicated as a white
circle) and to avoid large objects (indicated as a shaded rectangle)

2. Control Architecture

The control architecture is based on an Extended Braitenberg Architecture ([4]).
It is illustrated in the left part of figure 2. There are a number of behavioral
neural networks (BNN) functioning in parallel. Each BNN receives weighted in-
put from sensors and effectors (proprioception) and from other networks. They
all write simultaneously onto the effector variables where they are summed by
a particular summation scheme. The resulting values of these effector variables
determine the behavior of the agent. The behavior of the robot is as follows (for
a detailed formal description of the BNN’s used in this paper see ([4]). If there
is no activation in the other BNN’s the robot moves forward until it encounters
an object. When the robot is close to an object it tries to avoid a collision by
turning away from it. Whenever the right- or left-most IR sensor is activated,
the turn towards object network tries to maintain this condition. As a result
of the simultaneous activation of this network and the avoid network the robot
will start exploring objects it encounters head on by circling around them. Each
time the robot explores an object it senses to object after a predefined explo-
ration time by lowering the gripper. The units in the grasp and the push network
respond to activation of the resistivity sensor. If the object is conductive the
resistiviy sensor is on otherwise it remains off. The units in the turn-away net-
work receive input from the position sensor. For large pegs the gripper cannot
be lowered which results in large values of the position sensor. Another source
of input to the grasp, push and turn-away networks is the GDCS (see figure
2). The GDCS network receives input from the IR sensors and from a node
which encodes angular velocities. This implements the notion of sensory-motor
coordination: the GDCS network learns a topographical mapping of sensory
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Figure 2: The control architecture of the robot. The behavioral networks are
depicted on the left. The shaded networks are connected to the GDCS network.
The details of these connections is shown on the right.

(IR sensors) and kinesthetic (angular velocities) states whenever the robot is
exploring an object. The GDCS network is connected via modifiable weights to
the three behavioral networks which implement. grasping, pushing and turning
away behavior, respectively. Changes in the weight strengths can be modulated
by a value signal. The main idea behind these adaptive connections is that the
agent should learn to associate its sensory-motor mappings or categories with
these behaviors. The value system receives input from the turn-towards-object
network, the position as well as the resistivity sensor. The value system essen-
tially provides the agent’ s own reinforcement for the actions taken. In sum, if
the object is non-conductive the robot grasps it, if not it pushes it and if the
Iesistivity cannot be read (indicated by large values in the position sensor) it
turns away from the object. These are reflex actions. Learning occurs whenever
the robot makes an action, and the weights between the GDCS and the BNNs
connected to it evolve. As a result of this learning process an association be-
tween the sensory-motor categories and grasping, pushing or avoiding an object
is acquired. After learning the robot will execute these actions after a short
exploration time without sensing the object.

3. Learning Rules

One important characteristic of the GDCS algorithm is that the lateral con-
nections of neurons are modifiable. Lateral connections are non-symmetric and
updated according to a competitive Hebb rule:

1 : i=bmnAj=second
0 : i=bmn/\(a-Cg,~<9/\ng<0) 1
a-Cy i:bmn/\(a-C.-jZGVCj;ZO : ()
Ci; : otherwise
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where Cj; is the connection between neuron ¢ and neuron j, bmn is the current
best matching neuron. The centers ¢ are adapted using an error modulated Ko-
honen rule such that the distribution of units converges to a uniform distribution
of local approximation errors:

AChmn = f(r ) * Ehmn * (z - Cbmn)s (2)

Vn € Nh(bmn) : Ac,

bmn

f(n:: )-enn - (2 — cn)

247

where Nh(bmn) are the neighboring units of the bmn, r3mys is a2 moving average
of error signals of the bmn, = is the input, 7 is the mean error of Nh(bmn) and
f(:) is a monotonically decreasing function with ¢(0) = 1 and ¢(1) = 0. A dis-
tance driven insertion strategy inserts new neurons at the position of the input
if the distance of the input to the center of the bmn exceeds a certain threshold.
Distance driven insertion is crucial for the incremental category learning exper-
iments presented below because it inserts new neurons at the input positions of
new categories. An error driven insertion strategy inserts new neurons between
the neurons with the largest resource values. This leads to a fine grained ap-
proximation of the input data. The updating of the weights between the GDCS
network and the behavioral networks is as follows:

Awij = v(t)(nai(t)a;(t) — e((ai(t) + a;(1))w; (1)) (4)

where w;; represents the strength of the connection between the unit j of the
GDCS and the i-th BNN, v(t) is the value signal (activity of the value sytem),
a;j is the activation of neruon j in the GDCS, a; is the activation of the i-th
BNN, and 7, ¢ are the learning rate and decay parameters, respectively. Thus,
weights are decreased if there is either no pre- or no postsynaptic activity. The
main advantage this bidirectional active forgetting is that erroneous associations
between the GDCS network and the behavioral networks that have been built
up in the beginning of the learning process - where the sensory-motor mappings
have not yet been stabilized - will be significantly decreased as soon as a stable
mapping is acquired.

4. Results

There were 3 experimental stages. In a first phase (PI) only small (non-conductive)
objects were presented to the robot. Then a mixture of small and (conductive)
objects of intermediate size were presented (PII). Finally, a mixture of small,
intermediate sized, and large objects were presented (PIII). In order to solve the
stability-flexibility trade-off the robot had to (a) adapt to new objects and (b)
not forget already learned objects. The parameter values of the GDCS were as
in ([1]) and the ones of the GDCS-BNN connections as in ([2]). The initial size
of the GDCS was set to 2 neurons in all trials. The training of the GDCS was
based on a moving window of 60 samples. Samples were 9-dimensional vectors
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Phase | Reflex Triggered Category Triggered

PI S: 5.1+0.5 S: 44.61+3.4

PII S: 1.6+0.2 I: 5.61+0.6 S: 48.6+11: 39.84+4.2

PIII S:1.940.3 I: 2.340.5 L: 6.24+1.1 | S: 48.1+1.2 I: 47.64:1.3 L: 42.84+4.5

Table 1: Averaged (sdev.) sums over 5 trials and 50 pegs of each type. PI-PII:
Experimental phases. S - small objects, I - intermediate sized objects, L - large
objects :

consisting of the current readings from the eight IR sensors and the moving av-
erage of absolute angular velocitiy values. The overall performance is shown in
table 1. The main result to be taken from table 1 is that (a) a stable mapping
in the GDCS which allows the GDCS-BNN weights to evolve appropriately is
acquired very quickly (after less than 7 objects), (b) new categories are learned
incrementally when they are encountered in a new phase, and (c) categories that
have been learned are not forgotten in subsequent phases. The GDCS dynamics
leading to this behavior are depicted in figure 3.

5. Conclusion and Future Work

In this paper we have demonstrated that incremental category learning in a
mobile robot operating in a changing environment can be achieved by using a
Growing Dynamical Cell Structures algorithm. Future work will include the
investigation of forgetting dynamics in cases where categories are removed com-
pletely from the environment. Moreover, the GDCS algorithm will be refined
according to ideas used in the temporal SOM.
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Figure 3: Raw data and GDCS dynamics. Only non-zero entries in the sample
vectors and the GDCS centers were used for visualization. (a) raw data. (b)-(i)
snapshots of typical GDCS dynamics. Titles indicate phase, type and number
of objects, and number of neurons. For example, in (b) 5 small pegs were
encountered in phase PI and 39 neurons were evolved.
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