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Abstract. The main feature of this paper is to show that the key point of two different
problems tackled by neural approaches - pairing pattern and function approximation -
lies in the choice of the regularization term in the function which is minimized by the
neural approach. After the description of links between approximation of functions,
combinatorial optimization and regularization theory, we describe a neural approach
for solving the hard problem of change detection in aerial images.

1. Introduction

A wide part of problems which are solved by neural computation are ill posed problem
according to Hadamard definition. A problem is said ill posed if there is not only one solu-
tion, and if the solution is not a continuous function of the imput data. This is the case in
Combinatorial optimization and in Approximation of functions. A combinatorial optimiza-
tion consists in minimizing C(X) w.r.t some constraints T(X) where X={x1,,...x,}, x; €[0,1]
binary variables. It is well known that these problems frequently have a very large number of
solutions but even if they are transformed in a problem with one solution it cannot be said
that the binary outputs are a continuous function of the input data. Nevertheless a lot of neu-
ral approaches for solving them are based on the transformation of x; into y;e [0,1] and in
exhibiting a function F(Y) which can only be minimum if y;€ [0,1]. The minimizing process
is based on the computation of partial derivatives. The y; moves from a random starting
value to y;* in such a way that Y;* is (or is supposed to be) the solution. Usually when the y;
converges towards y;* there is a bowl around y;* such that when y; enters this bowl, it can
only converges towards y;*. When the value of y; is assigned then x; is assigned. If we consi-
dered the radius of these bowls they are continuous functions of the input data and thus for
some transformations of a combinatorial optimization to the minimization of a function F we
can considered that we have regularized an ill posed problem.

In Approximation of functions, The approximation problem amounts to find F(X) such as F
€ Fa set of functions andn which minimizes:

E= Y (F(x) -f(x))*
i=1
Obviously pattern recognition by the mean of backpropagation based neural network is
exactly the same problem by adding to the «error term» E a «sensitivity» term which is sup-
posed to be minimum when the ratio between variation of the outputs and the variation of the
inputs is minimum. Some solutions are proposed in [1], [2] which are all based on the mini-
mization of a so called sensitivity criterion. But a more general solution is presented in [3].
The basic idea is to define a functional H(F) with an error term and a constraint operator P
such that: H(F) = E+Al/PF|| where P stands for the constraint which must be met by
the solution F. The structure of P embodies the a priori knowledge about the solution and
then is problem dependant. It is proved that for each P there is a function G such that the
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solution F* is given by: N
P = 1Y - F)6(X)

14
Obviously the difficulty is to find the function G related to the operator P.
Regularization theory can be used for solving not only academic problems but also real
world problem by introducing well adapted regularization terms in functions which have to
be minimized. The aim of this paper is to show that well chosen regularization terms allow to
solve hard problems like the analysis of differences between two outlook aerial images of the
same area taken at two different times.

2. Presentation of the application

While in satellite images differences analysis the registration is not too difficult since there is
only a quite isometric transformation between the two images, the problem is much more
difficult for aerial images because the two images can have been taken from two different
points, at different levels, and with different angles. In order to achieve our goal, we have
split the problem into four sub-problems: The selection of characteristic points in the two
images, then the mapping of these characteristic points of one image with characteristic
points of the other one, on this basis the design of functions allowing a pixel to pixel map-
ping between the two images, and last exhibiting the differences (new building for instance).
When comparing images we have pursued a natural approach for the first problem, in that we
have looked for common points in both images. Since each pair of images usually contains
millions of pixels, our approach has been to identify a hundred or so feature points in each
image and since our test consists of images of an urban area with a few buildings, we have
chosen to select the corners of buildings. These points are not frequently hidden and several
methods (corner detector) have already been proposed in the literature. In the part three, we
present a new algorithm alowing the matching between two sets of points with a nonuniform
distribution in the plane. These correctly matched pairs are the control points and are going
to represent our future learning set to modelise the global registration presented in the part
four. After a presentation of the results in part five, we gave some tracks for the best use of
regularization principles.

3. Mapping of characteristic points
3.1 Labelling by adaptative mapping

The problem for discussion in these part can be stated as follows. We have two sets of points
in the plane. The second set is similar to the first set, except that some of the points from the
first set are missing and some new points, not in the first set, are present. The positions of the
points in the second set are not the same as common points in the first set. There is large
local distortions. The problem is to find all common points in the two sets and find the cor-
rect match. We are going to show that the mapping between characteristic points can be sol-
ved by using the Yuille [4] principles if we take into account the nonuniform distribution of
points in the plane. A deformable template is a model described by a set of parameter so that
variations in the parameter space correspond to the different requests of the model [5]. Let
{Q},i=1..nand {P;}, j=1..m the position of points in the two sets. Matching {Q;} and {P;}
can be formulate as the minimization of an energy function:
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(-7, (@)"
E({v;},a) = ZAUVU———;;—— +£,(a)
ij

Ajj is a compatibility matrix. A;;=1 if the features labelled by i and j are totally compatible
and Ay=0 if they are totally incompatible. The Vj; are binary matching elements, A is a con-
stant and Ej(or) imposes prior constraints on the model. If we want our energy to preserve
distances between a point and its neighbors during the matching process, we can defined:

2
2 2
do.—|p,~ P
; ; | kj | J kl |
Ep(a) = z\l’(l) where Y() = e —
ij k€ neighbour (j) dkj
If we now impose constraints on the possible matches by summing over the configurations
of {Vj;}, and calculating the sum over these configurations (we eliminate a non valid part of
the space) we obtain the effective energy:
(Q;=P;(0)"

_1 ij n
E, (o) = FZ;mg ;e > +E, (o)
Minimizing Eg(0r) with respect to oL corresponds to deforming the template in the parameter

space to find the best match. With these new energy function, we can do an optimization on
o by a gradient descent. After some calculation we obtain the displacement suffered by the

points P; AP, = azi:wij(Q—P) +aszw(j) (=P

where @;; is the normalized influence of the point Q; on the point P; and A a scale parameter.
The values of o and P regulate the relative strengths of the two type of force acting on P;,
respectively the attraction toward the point Q; and the pull toward its neighbors. The normal-
ized influence wj; is given by:

& (1gi—Pjl, 1)

0, = —— _ _p
ij Zcb(lQi—le,x) where ©(d,K) = exp(__)
k

22

The algorithm uses a fixed number m>n of points and a decreasing sequence of values of A.
For each value of A, a number of iterations is performed and in each iteration all points
moved according to Eq (1). The algorithm terminates when at least one point is close enough
to every point Q; according to a pre-specified tolerance. But displacing the points P, accord-
ing to Eq (1) brings about two important problems: The first problem is that for large values
of m (and n consequently) this algorithm may become excessively time-consuming. The
computation of every single displacement depends on the position of all points Q;. In every
iteration the ®;;’s must be re-computed as a function of the new positions of all points.

The second problem is the initialization of the two parameters o and P to have a correct and
fast matching when there is a nonuniform distribution of all the points in the space. At each
iteration we have to increase the parameter o which regulate the attraction toward the points

of the pattern Q; and decrease B which regulate the attraction toward the neighbors of P;. If
we describe the P;’s behavior during the iterations, we can see that aggregats of P;s are going
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irremediably toward the inertia center of Q;’s aggregats. During the same time, isolated
points P; try to find isolated Q;. When the rigidity B decrease and o increase, element P; of
the aggregats goes toward the nearest Q;. The result is usually a bad matching.

Boeres [6] proposes a filtering mechanism that solve the first problem. Their notion of A-fil-
ter is based on the identification for each point j and each value of A, of a subset Qy(j,A) € Q

such that: Y o (|g;~P|,N) = T2¢(|Qi—l’j|,k)
ie OrGid) icQ

Finding these subset for an arbitrary arrangement of points Q; on the plane is not easy, so
Boeres used the approximation that the points Q; are infinitely many and scattered through-
out the entire plane uniformly with density p. This approximation can’t be apply success-
fully in many application where the selection of control points in the reference and sensed
images depends on the response of features extracting operators.

We present now a filtering mechanism based on the definition of a specific neighborhoods
that accelerate considerably the matching algorithm and can cope with a nonuniform distri-
bution of points in the plane

3.2 The filtering Mechanism

We formalized the problem of mapping two sets of points {P;, i=1..n} and {Q;, j=1...m} into
the minimization of:

E( {Vij}’ {P}}) = Zvij (Qi—Pj)z"'xth(Qi’ PJ)
if
Vj; are binary variables with Vj;=1 if Q; is associated with P;, V;;=0 otherwise. A point Q;
must be matched with one and only one P; of the model then 2 v,=1- Fy(Q;,P;) stands

for the function representing the difference between the structure of {P;} and that one of
{V;jQ;} where V;;Q; is the Q; which is mapped with P;. The problem can be seen like the
mapping of P; to the closest Q; with respect to the “structure” of the two sets. Thus we have
an error term and a regularization term. The term F; is problem dependent. In our application

the constraint is that a set of points close together will only be mapped with points which are
also close together. The structure F; represents this constraint by a term which looks like the

error term but which is related to barycenters of sets of points which are in a neighborhood.
For defining the neighborhood we have used the Delaunay and Voronoi tessellations which
provide a fundamental order for a set of multivariate data. Let now Wy (respectively W’} in

the second image) be these neighborhoods and By the barycenter of Wy (respectively B’})
then:

Fo= 3V (B,—5')’
ki
Matching {Q;} and {Pj} can be now formulate as the minimization of the energy function:

E({vgh, 2D = X v (0-2) 42,3 v, (8- 8)”

A, is a decreasing parameter accordinguto the convergenéél of By toward B’} in such way that
after these convergence all the characteristic points, belonging or not to a neighborhood can
be mapped. These correctly matched pairs are the control points and are going to represent
our learning set to modelise the global registration
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4. Mapping pixels and regularization neural networks

To solve the next problem, let us assume that the positions of k corresponding control points
in the image ((x;p, yip),(Xiq, ¥iQ), i=1...k) are given and their mutual correspondence is esta-
blished by the previous step.We would like to find two functions f and g in such a way that
the image registration represented by:

Xig = F(X;ps ¥ip) s i = 8 (X;p ¥;p) With:i=1..k

would be as accurate as possible. Because the measurements are sparse, the problem is ill
posed and requires adding a smoothing or regularizing term to obtain a solution in areas
away from measured points.We can formulate our problem as the problem of minimizing a
functional depending on two piecewise-smooth functions fand g given a sparce set of noisy

measurements:
k

k
1) = Y, (= FGpap)) 2+ Y, (rp=8 (e yp) ) 244, (I PAI% +11 Pll?)
i=1 i=1
where {(Xjp Yip X;Q); i=1..k} and {(x;p yip Xjq); i=1...k} form the learning sets and A, a
positive real number. The operator P is a constraint operator usually called stabilizer and ILII
is a norm on the function space to which Pf (respectively Pg) belongs (usually the L2 nor-
m).The structure of the operator P embodies the a priori knowledge about the solution, and
therefore depends on the nature of the particular problem that as to be solved. P measure the
smoothness of f (respectively g). The regularization parameter controls the trade-off between
the two terms. The minimization can be realized by a neural network [3] with one layer of
hidden units. The first layer of this network consists of input units whose number is equiva-
lent to the number k of examples that we have defined. The second layer is composed of non-
linear hidden units fully connected to the first layer. There is one hidden unit for each
example. The activation function of the hidden units is the Green’s function.

5. Results and application to change detection

We present a pair of images (in fact part of images) of the same area taken at a time interval
of several years (Fig 1). The control points are building corners. For simplicity’s sakes, we
have shown only few iterations of the matching process. Control points of the model goes
toward control points of the pattern and we can see a part of their trajectory (Fig.2a). The
result of the pixel to pixel mapping is shown by the result of the transformation obtained on
the first image. The presented result (Fig 2b) is the first image where each pixel (xpj» ypj) has
been located at f(xpj, yp;), 8(Xpj> yp;) With the same grey level. The change detection is at this
stage of our study very simple: we compute the correlation coefficient of local histograms
computed on a window centered on each pixel. The correlation number expresses a simila-
rity between two laws (the histogram for example). When the coefficient C(H1,H2) is null,
laws are orthogonal, in others words H1 and H2 are overlapping and then their scalar product
is null. Histograms H1 and H2 are then representative of two different textures. On the other
hand, when C(H1,H2) is very close to 1, the two histograms overlap and are representative
of a same region.

6. Conclusion
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We have shown in this paper that the key point of two different problems tackled by neural
approaches (function approximation and pairing patterns) is in fact the choice of the regula-
rization term in the function which minimized by the neural approach. We believe that this
choice is as important as the choice of the neighbourhood function in any local search based
method in combinatorial optimization (it is generally agreed that in this case the neighbou-
rhood choice is more important than the «hill climbing» method. Therefore the issue is now
to define which are the properties which make efficient the regularization term. We will try to
address this problem in further studies but we have first to solve a remaining open question
in our application: How to select significant changes among those which are exhibited. It is
clear that the significance of the differences in our application is task specific though man-
made changes are more important than changes caused by natural factors such as seasonal
changes.
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Fig.1. Original images (512x512)
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Fig.4. a) Some iterations of the matching process, b) Registration of the first image
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