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Abstract. In the visual system of the fly movement sensitive neurons show
an amazing flexibility in their processing performance. This flexibility is
modelled by introducing in the sequence of processing steps in the parallel
input channels of these neurons the dynamics of synaptical functioning. This
is done in such a way that the transmitter regeneration rate is a function of
the on-going state of the stimulus generated activity in the input circuitry of
these neurons. Model simulations fit experimental results in a convincing
way.

1. Introduction

In the highest order ganglion of the fly visual system, movement sensitive neurons
are found with visual fields which equal the visual field of the whole eye. These
neurons perform a spatial summation of the activity present in the retinotopically
ordered columns of their ganglion and transform this activity into a train of action
potentials (spikes). One of these wide-field neurons, the HI1, is horizontally
selective in its movement detection performance: rates up to 400 spikes/s can be
recorded in the case of visual stimuli which move horizontally inward (i.e. from
back to front, the so-called preferred direction) in the visual field, whereas
movement horizontally outward (null direction) suppresses the spontaneous activity
of the element.

It is relatively easy to make extracellular recordings of this neural element which
means that the information processing properties of HI and, in part, up to H1l in
this visual system, can be studied without damaging any part of it. A wide variety
of precise and systematic experiments revealed the interesting property that the
time-resolution of this visual system at this level is set by stimulus properties in
such a way that the resolution increases (time constants becoming smaller) with
increasing velocity of the moving visual stimulus (Mastebroek et al., 1982;
Maddess and Laughlin, 1985; de Ruyter van Steveninck et al., 1986). It has been
shown that the temporal resolution of movement detecting elements at this level of
the fly system also is affected by temporal modulation of the visual stimulus, but
to a much smaller extent (Borst and Egelhaaf, 1987).

In this contribution we present experimental results and model simulations
concerning this stimulus-tuned temporal behaviour in the processing of moving
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patterns by this visual system. Our basic idea in the description and understanding
of this adaptive strategy is that the level of activity in the columns of the input
circuitry of the H1 movement detector can regulate the excitable properties of
these elements via the biosynthesis of neurotransmitters (Changeux and Heidmann,
1987; Shepherd, 1988; Kuno, 1995) in such a way that the system as a whole is
equipped with flexible processing properties in an optimal way. Grossberg and
Gutowski (1987) used properties of neural dynamics in their study on decision
making under risk. Carpenter and Grossberg (1990) embedded the dynamics of
synaptical processes like -tramsmitter accumulation, release, inactivation and
modulation in the computational properties of their well known Adaptive Resonan-
ce Theory III neural network in order to construct a self-organizing pattern
recognition architecture. Ogmen and Gagné (1990) implemented signal transmissi-
on via depletable neurotransmitters to obtain temporal adaptation properties in their
model for motion perception in the fly visual system. '

2. Experimental results

The stimulus pattern was a square-wave grating of about 30°x30° with a spatial
wavelength of 10° (which is about 8 times the interommatidial angle of the fly eye)
and with a moderate modulation depth. The pattern was presented in the region of
maximum sensitivity of the H1 neuron, i.e. about 20° laterally around the equator
of the eye. The time-course of a single stimulus presentation consisted of an
adaptation period T, of 3 s during which the pattern moved continuously with a

constant speed V, at the end of which the pattern was stopped and kept in a fixed
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Fig.1. Horizontal axis: time in units (bins) of 2 ms. Vertical axis: spikes/s. The figure

shows the averaged H1 spike activity during the last 100 ms (up to bin 50) of the adaptation

period, the recovery from this level of activity (bins 51-149) and the onset of the response

R(t) to the test-step of the pattern, beginning 200 ms after the end of the adaptation period

(bin 150). During the adaptation period, the pattern velocity was V = 0.36%s. The time

constant of the exponential decay of R(t) is 7 = 330 ms. (After de Ruyter van Steveninck et
al. (1986)).

position during 1 s except for a "test-step” which consisted of a small (0.6°) and
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momentaneous displacement presented 200 ms after the moment at which the
pattern was stopped. From the system-theoretical point of view, such a test-step
can be looked at as an impulse of movement, presented to the system. Averaged
responses ("impulse responses”) to such test-steps of the stimulus in the preferred
direction of the neuron are shown in fig.1. Before the presentation of the test-step
the stimulus motion during the adaptation phase was set at 0.36°/s. The response
R(t) in reaction to the test-step can be described with an exponential decay towards
the resting level of the neuron. The time constant of the decay as obtained from a
least-squares fit is 7 = 330 ms. From these type of measurements it follows that
for adaptation velocities ranging from 0.3 to 125°s the time constant of the decay
of the response changes from 320 to about 10 ms according to the relation 7 =
150.V*7 with V the stimulus velocity during the adaptation phase. Further
important results are that 7 is not set by the spike rate of the neuron, and that 7 is
tuned locally which means that spatially separated stimuli with different velocities
each tune 7 according to their own velocity.

When the adaptation phase is followed by a longer period in which there is no
stimulus movement, .the change of the time constant from the shorter adapted value
of the adapted state to the larger value of the unadapted state can be followed in
time by presenting a series of test-steps with e.g. interstep-times of 1 s. The
results (fig. 2) show that, after adaptation due to stimulus movement, it lasts about
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Fig.2. Horizontal axis: time in units of 10 ms. Vertical scale: spikes/s. The figure starts at
the end of the adaptation phase of the stimulus and shows responses Ry(t) (k = 1,2,....8) to
test steps. (After de Ruyter van Steveninck et al. (1986)).

8 to 20 s before 7 has reached its level of the unadapted state again. For a detailed
description of the experiments and an elaborate discussion of the results we refer
to de Ruyter van Steveninck et al. (1986).

3. Model simulation results
As a first step, we implement a chemical synapse in the sequence of signal proces-

sing steps in each of the parallel input channels of the movement detector. Let z(t)
be the amount of transmitter available for release in this synaps and B the maximal
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Fig. 3. Horizontal axis: time in units of 10 ms. Vertical scale: arbitrary units. The model

responses R1(t) and R2,(t) (k = 1,2,...,8) start at the end of the adaptation phase of the

stimulus. Upper trace: model response with constant value A of transmitter regeneration

rate, lower trace: model response with A as a function of the ongoing stimuius generated
activity.

amount of transmitter. This means that (B-z(t)) is the amount of depleted transmit-
ter at time t. This depleted transmitter re-accumulates with a time rate A. If we
denote the stimulus by S(t) and suppose a gating action of z(t) on S(t), then the
amount of transmitter released (inactivated) by the stimulus is proportional to
S(t).z(t), e.g. C.S(t).z(t) with C a constant. For the resulting production rate of
transmitter we can now write (with for reasons of conveniance C=1):

dz(ty/dt = A(B - z(t)) - S(t).z(t)

Note that, if S(t) = 0, z(t) = B in the stationary state and, when after a stimulus
action z(t) has become smaller than B, it will return to B with a time constant 7 =
1/A as long as Sit) = 0. This equation, which is an ordinary differential equation
from™the stiff type, can be solved directly when S(t) = S.H(t), H(t) being the
Heaviside function and S the stimulus amplitude. It follows that:

Z(t) = (BS/(A+S)).exp(A+S)t) + AB/(A+S)

which means that, due to the action of the stimulus, z(t) levels to the value
AB/(A+S) < B with a time constant 7 = 1/(A+S). This time constant is set by
the stimulus such as the larger the stimulus, the smaller the time constant! Trans-
mitter regeneration dynamics is reflected now in the system behaviour as long as
S(t) == 0. This property does not deliver however the movementdetector’s behavi-
our as depicted by the experimental results presented in fig. 2. Indeed, after
adaptation to a movement stimulus, the system slowly recovers from this adaptati-
on while S(t) = 0. In order to realize this behaviour in the model we introduce
another expression A(t) for the transmitter regeneration rate A, equipping the
model with a "memory” term (like a moving average) weighted via a kernel functi-
on k(t) with a long time constant. We thus write:

A() = A, + k(t)® RS(t)
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where A, is a constant, @ denotes convolution and RS(t) is a function which
describes the stimulus generated activity in the input channels of the movement
detector. In a simple first approximation we take RS(t) (:) S(t). For the kernel
function we take: k(t) = (1/T).exp(-t/T), with T being a large time constant (T =
10 s). Simulation results of the model with A as a constant and A(t) as a function
of the past are given in fig. 3. The improvement of the model’s performance in the
case of a stimulus-tuned transmitter regeneration is evident.

4. Conclusions

From the experiments it follows inevitably that the system’s time resolution is set
by the stimulus generated activity in the parallel input channels of the movement
detector and, that -after the stimulus has been taken away- this adaptation pheno-
menon fades away according to a large time constant. As can be seen immediately
from the differential equation, variations of the parameter B, the maximum amount
of transmitter, do not influence 7 but vary amplitudes. To account for the activity-
dependant behaviour of the time constant we have to make the transmitter regene-
ration rate A in the modelling of the synaptical properties to be a function of the
past. In this way we endow the system with flexibility properties which depend on
its on-going state.

We did not produce so far any direct experimental evidence with respect to the
basic assumptions which underly our model. In order to do so and to realize a
more quantitative comparison between experimental resp. model results, totally
different kinds of experiments must be done.
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