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Abstract. One of the mainissuesintheresearchontimeseriesisits prediction. Using
a tapped—delay neural network we formulate the optimal network size from the
signal correlation time. Then the biofeedback—drivenneurocontrol for artificial
human walking is developed with much detail on the signal preprocessing. Finally
weindicate the needfor a hierarchical network architecture to eliminate oscillatory
effects inherent to handling the human motor control problem.

1. Introduction

The most important aspect in time series prediction is the modelling of the series.
Before we are able to predict the future values based on its history, we have to derive a
model for the underlying behaviour. Statistics gives useful tools for this, but a major
objection to most of these techniques (for example the well-known ARMA method [1])
is that they assume a priori that the time series was generated by a linear process. Most
series one encounters in practice, however, are of a nonlinear nature; therefore much
etfort has been spent to achieve a more effective, that is nonlinear, model building. The
most important statistical approaches to model a nonlinear time series are listed in [2],
where these models are applied to predict the tamous sunspot activity data.

A powerful and very promising alternative is the use of an artificial neural network
(ANN). ANNs are considered well-suited in the adaptive identification of nonlinear
systems [3]. A careful comparison of different neural methodologies for time series
characterization and prediction is presented in [4]. A methodology includes three
stages: (i) Preprocessing and model identification, where the architecture of the
network is designed. In the preprocessing—stage statistical measures for determinism,
chaos, randomness, nonlinearities and dependencies are used. Another important
aspect is the calculation of characteristic features containing information about the time
series, that aid the network in the learning process. (ii) Model building, where the
training of the network is performed with a training data set. (iii). Verification, where
the optimized net that results from the training stage is checked against the test data set,
that is data that had not been used in the training process.

Most studies put emphasis on the last two stages. However, an ANN has limited ability
in interpreting input—data: when offered conflicting or badly preprocessed data, it has a
hard time in establishing any relations between inputs (and outputs) and so bad learning
and generalization takes place. The topic of preprocessing vs. network architecture is
thus of major importance in neural network design. In this paper we will therefore focus
on the preprocessing—stage, in which the data is carefully studied before building an
appropriate ANN.
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As an application we present the use of ANNs in the construction of an artificial
walking system, i.e. a system which enables paraplegics to walk again. We will focus on
the inverse dynamics problem, trying to relate movement to its underlying muscle
activation pattern. We will show that ANNs are capable of predicting future muscle
activation using past activation and movement data.

2. Preprocessing and model identification

We now turn to the central theme of our research: how to capture temporal features of
the data vector in order to make reliable future predictions? The following techniques
are available for a carefully exercised preprocessing:

— Data analysis; before building a predictor one should study the process that did
generate the observed realisations, i.e. is it of a deterministic (e.g. chaotic) or a
stochastic (e.g. noisy) nature. The entropy measure together with the correlation- and
reconstruction dimensions [4] give valuable indications whether the process is
deterministic or stochastic. When it is generated by a stochastic linear process one can
use statistical theory; when dealing with nonlinear data they are not adequate anymore.
In this case we may proceed by modelling the nonlinear temporal function directly, e.g.
using interpolation, local linear approximation [5], least—squares methods or ANNs.

— Characteristic feature extraction; when predicting a signal some timesteps ahead one
could choose to present the network only the signal’s own history so that there is an
analogy with statistical predictors. Another approach is that one first determines the
characteristic features of the data and collect these in the input vector of the network. By
presenting the network arithmetical functions and statistical features that cover all
necessary information of the raw signal, one reduces the size of the network. The
smallest network that can learn the training data is usually desirable.

- Additional data; utilization of additional data (i.e. related to the signal to be predicted)
is in most cases essential for good results. Using additional data features for further
fine—tuning can conveniently be done when an ANN-based predictor is constructed.
The choice of additional data, giving useful information on the to be predicted signal,
can be based on cross—correlation of the data with the signal. This choice is a nontrivial
task as much redundancy could be present in the inputs supplied to the network. When
an ANN is confronted with too much freedom, its generalization capabilities will
deteriorate. Practical utilization of the system requires a reduction of redundancy, for
instance by the well-known Principal Component Analysis (PCA).

A major issue in our quest for the optimal neural predictor is to take decisions about
preprocessing, network architecture and learning rule in a reproducible way. After
preprocessing and data analysis, the next choice is on the network architecture and
learning rule. We will mainly debate the first choice; as learning rule we choose the
standard error backpropagation rule. An important decision in neural system design
concerns the dimensions of the network, i.e. the number of input, hidden and output
units. Many techniques for optimization of network dimensions exist, such as network
pruning and growing. In [2] several criteria based on Akaike’s information criterion
(AIC) are introduced that determine the optimal number of ANN hidden and input units.
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In time series prediction the most popular architectures are time—delay and real-time
recurrent networks [6]. Here we will focus on a frequently used ANN in temporal
processing, namely the multilayer Perceptron with on its inputs a tapped delay—line, i.e.
a device that stores past samples of the inputs. We want to find the optimal size of the
delay-line to learn the signal characteristics and to generalize it adequately. We state
the assumption that the number of time delays in the tapped delay-line to capture the
temporal properties of the input data depends on the input data autocorrelation function.
More specifically, we estimate the size of the tapped delay-line by the number of
reasonably autocorrelated lags: ND =~ min(k: k € N : r(k) < €) where ND
denotes the number of data samples in the delay-line, € is a suitable non—negative
constant and r denotes the sample AutoCorrelation Function (ACF) of the input—signal
x of length n, defined by [1]: r(h) = v(h)/y(0) ,0 < h < n — 1. Here y(h) is the

n—h
sample autocovariance % 2 (x() — X) (x(j + h) — X) with x denoting the sample
j=1

mean. For € = 0, the upper bound is also denoted as correlation time, i.e. the minimum
lag for which the value of the ACF is below 0.

Fig.1. Train and testerror forasignal withcorr.3  Fig.2. Train and test error for asignal with corr.7

The hypothesis about correlation content and time—delay length is investigated for
signals with predefined autocorrelation (using a first—order moving average scheme).
The network generalization errors show to be minimal about the length that corresponds
to the correlation time of the test signal. Results for two test signals (with predefined
autocorrelation 3 and 7) are shown in figure 1 and figure 2 respectively. The circle
within a rectangular bar denotes the Mean Steady-state Test Error (MSTE), i.e. the 3¢
—error after 5.000 epochs, averaged over 5 experiment repetitions, whereas the
horizontal bars on the outside of the vertical bar indicate minimum and maximum
MSTE over 5 experiments; the plus—signs denote the, uniformly decreasing, mean
squared train error. At delay-lines shorter than the input signal correlation time, there is
still “much to be learned™”, so on average similar generalization capability is shown; at
larger delay lines, the minimum level has already been reached, so that adding more
inputs will increase the degrees of freedom, while no extra information is provided.
This will worsen the generalisation potential. We conclude from these simulations that
the correlation time is a reasonable estimator for the time—delay size in the input layer,
when dealing with signals with simple linear dynamics.
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3. Application to artificial human walking

Two basic approaches are pursued in the research on rehabilitation of paraplegia. In
Functional Electrical Stimulation (FES), the injured muscles are electrically stimulated
to regain functional gait [7]. Biofeedback provides patients with sensory information to
support the rehabilitation process [8]. Lately, one strives to combine these approaches
by utilizing specific information about balance (distribution of ground reaction forces),
body configuration (joint angles) and muscle activity (EMG-signals) to control the
stimulation of a paraplegic’s disabled lower extremity musculature.

We will focus on the inverse dynamics problem to relate movement to the underlying
muscle activation pattern. In other words, we are looking for “a mapping between joint
angles and ground reaction forces on the one hand and EMG patterns on the other”.
Since walking is a cyclic activity, we expect the body signals concomitant with walking
to be also repetitive and therefore likely to be predictable. Specifically, the EMG-signal
from the right Tibialis Anterior muscle (see figure 3) will be predicted during walking
by a neural network using (i) the EMG-signal’s own history, (ii) information about joint
angles and ground reaction forces and (iii) statistical features from (a time—window of)
the EMG-signal.

1o 1o = ERE) ERE =3 = = s T=

Fig.3. EMG Signal from the right Tibialis Anterior muscle

The measurement data contain 3000 samples (representing 2.5 steps). The first 2000
samples are to be used for training whereas the last 1000 samples are kept for
verification. From estimates for the correlation— and reconstruction dimensions [4] it is
noticed that the first increases uniformly with the second, indicative for a random
signal. This was affirmed in further experiments. In [7] it is stated, that the standard
deviation of the signal is indicative of the walking cycle and hence can be used as a
feature for the neural predictor. Other useful parameters are: mean, maximum and
minimum values of a small segment of EMG.

In [8] it is stated that the analysis of the EMG requires to take also the associated
movement data into account. The selection of suitable movement signals can be done
by looking at the Cross—Correlation Function (CCF) of muscle and movement signals
with the EMG. Two periodic (walking) signals with strong correlation will have a CCF
that is both clean (lacking local distortions) and periodic. Experiments are negative for
ground reaction forces of the right lower extremity, but positive for the joint excursions
in the sagittal plane (i.e. hip extension and knee flexion). This was verified by a neural
emulation of PCA using the generalized Hebbian learning rule. The different input sets
range from (i) joint angles from the frontal and transversal plane, i.e. only knee rotation
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and hip abduction (this resulted in the eigenvalues 0.700, 0.517,0.026, 0.011) till (ii) all
joint angles to/from all three planes, i.e. knee flexion and hip abduction was also
included (eigenvalues 1.277, 1.076, 0.447, 0.245, 0.099, 0.030, 0.019, 0.015). We have
noted that large new eigenvalues emerge after addition of hip extension or knee flexion,
therefore these can be expected to contain most of the information of all angles.

As neural predictor a multilayer Perceptron is chosen, having n inputs (the predictor
order), 5 hidden units and 1 output with a 0.7 learning rate and a 0.5 momentum term.
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Fig.4. Recursive linear and neural predictions of order 62

After checking the correlation time and the partial autocorrelations of the data
segment, the predictor order is set. From a comparison of neural to linear prediction
errors (using the Durbin-Levinson algorithm [1]) we find that the latter gives the
smaller rms error over all test samples (1.02 vs. 1.54). But from figure 4 (this snapshot of
the first 80 predictions for predictor order 62 is typical for much predictor orders) we
see, that the linear predictor quickly fades out to zero, while the neural prediction
reflects the correct dynamical behaviour but is frequently out of phase (which is the
cause of the large rms errors). From [7] it is known that despite the phase lag this already
suffices for an estimation of exerted muscle force. To improve performance, we add as
features to the network the mean value and standard deviation of the delayed samples as
well as the optimal linear AR—prediction. The test errors for order 3 is now 2.93, but
already 1.06 for order 62 (see figure 5 for order 137). Although adding statistical
features may have a positive influence for larger order, adding movement data has a
distinctly negative effect: rms errors are for order 3, 62, 137 equal to 2.56, 1.06, 5.79
respectively.
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Fig.5.Neural pred.(order 137) usingstat. features  Fig.6. Neural pred.(order 137)usingall features
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Figure 6 shows a 137-order 800-lag predictor. Now, there appears erroneous
behaviour for large delay-lines when using movement features. Note that the
oscillations arise only after many recursive predictions, so it may well be that this
phenomenon is caused by the propagation and accumulation of the one—lag prediction
errors. In figure 7 the final 62—order response is depicted.
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Fig.7. Neural pred.(order 62) using all features

Conclusions.

For signals with linear dynamics, it seems indeed possible to perform prediction with a
delay-line only, and we can base its length on the signal’s correlation time. Recursive
n-lag prediction is likely to result eventually in large artefacts, ultimately leading to
saturation of the neuron transfer functions and oscillations. For the application at hand,
only the “amount of activity” is required and the neural predictor is fully justified.
However, because of the large time constants in the human motor control system,
predictions have to be made many samples ahead. This can obviously not be realized by
a single ANN with long delay-lines but requires a more heterogeneous set—up.
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