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Abstract : The new neural network architecture named ODWE (Orthogonal
Delta Weight Estimator) implements a context dependent behavior by dynami-
cally estimating the synaptic weight variations of a main MLP with regard to
context parameters. The main MLP is first trained to modelize the general
behavior of the task and then these connections are modulated to adapt to con-
textual parameters. We present in this paper a new extension of this principle by
the generalization of the use of contextual modulation and show its perfor-
mances in a combinatory problem: the multiplexor problem. We compare these
results with other works.

1. Iptroduction

It is commonly known that Artificial Neural Networks (ANN) have great ability to
solve many kinds of tasks, such function approximation, classification, optimization,
neurocontrol. Many ANN architectures have been developped to solve such or such
task [2]. One of the best known is the multilayered Perceptron (MLP). The MLP archi-
tecture has a great ability for generalization in a noisy environment or in non-fulcov-
ered spaces of training examples. The input space of a MLP is often defined by one
dimension for each known parameter of the task. In many cases the input space size
becomes very large and the internal connectivity increases accordingly.

Our studies [6] showed that it is ofttimes possible to analyze the input space of a prob-
lem as a perception space plus a context space. The first architecture developped on
this analysis has been the OWE, in which each connection of a MLP (main MLP) fed
with the perceptual part of an input pattern, is estimated by another MLP named OWE
(“Orthogonal Weight Estimator”) fed by the contextual part of an input pattern. We
extended the OWE architecture to the ODWE architecture (“Orthogonal Delta Weight
Estimator”) in which one ODWE computes a variation of each connection in the main
MLP. The problem becomes, in the first phase, to train the main MLP to solve the task
all contexts being joined (general task). In a second phase, a set of MLPs (ODWEs)
fed with context parameters is trained to estimate the variations of each connection
value of the main MLP wrt! the inputs in the context space to adapt this general task
[5].

1. with respect to
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Two problems appeared in the use of the ODWE architecture. The first one is that the
use of one ODWE for each connection of the main MLP is sometimes superfluous. The
second one is the opposite i.e sometimes, one level of abstraction, given by an ODWE,
is unsufficient.

The content of this paper proposes a solution of these problems and presents some
results on a combinatory problem.

2. Superfluous ODWE

The first step of the training process to the ODWE architecture is to train the main
MLP that will compute, if taken alone, a general solution to the task or, in other words,
the general behavior. During this phase each connection originating from the input
space (respectively from neurons in hidden layers) of the main MLP, captures the mean
feature on the context of the perception space (respectively of the internal representa-
tion of the input space) wrt the task. At the end of this phase, the mean feature will be
the exact feature if this feature does not depend on the context variations.

The end of the training phase is commonly chosen with regard to desired mean error
over a test corpus. Of course it is not yet possible with our architectures because the
context is not taken into account, so the mean error is always greater than the desired
one. Another way to detect the end of training is to see that the mean of the error gradi-
ent, taken on one epoch, for all connections is null. This is the test of stationnarity of
gradients. If we apply this test for one connection it can be said that the connection
value does not change anymore and has captured the mean feature. Now, in order to
know if this connection needs an ODWE neural network to compute the variations of
the mean feature wrt context variations, it is necessary to know if the connection value
reflects a mean feature or an exact feature which does not depend on context varia-
tions. This knowledge is given by the variance of the gradient. In classical MLPs the
gradient variance gives only the importance of the input/output noise on the connec-
tion. Here, because some inputs of the main MLP have been removed, the gradient var-
iance of a connection also reflects the context dependency of the connection value.

This analysis clearly defines a general algorithm for Incremental ODWE architecture.

In this algorithm, W,.j is the connection value, x is an input of the main MLP taken in
the X perception space, @ is a context input, Ho is the conditional probability distribu-
tion over the perception space X given the context @, SWU((p) is the output of the
ODWE attached to ij connection fed by ¢, A (x) is the error function, V, denotes
the gradient wrt Wij, Be [0, 1] is the rate of ODWE attachment, € « 1 ,']7» is the

learning rate, E denotes the expectation and V the variance.
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(a) propagate all inputs x € X
W’.j =W, Tha W, ,(‘P) for connections attached with an ODWE

(b) for each connection of the main MLP

compute Ey = J‘VW“A (x) U (dx)
ij X U]

(c) update connections
Wij - W’.j - ?..EV’_.

@) if ZE2 > ¢ goto (a)
iJj
(e) for each connection §j of the main MLP

compute Vy = I Vw A(x) 2“ (dx) (E2V is neglected)
i i i

(f) foreach i l] Vy > (1- B) - max (VV ) attach a ODWE to W connection
(g) train each ODV{IE(tj) by using for eacfx ¢ the desired output glven by :

By @ = [ Vi AR (dn @)
ij i
Xo)
(h) propagate all inputs (x, @) € Xx ¢ by using
Wij = Wij + 8Wi j((p) for connections attached with an ODWE

(i) if test on mean error is not reached increase B and go to (f)
FIGURE 1. General algorithm for Incremental ODWE.

This algorithm presented above is based on the batch backpropagation learning algo-
rithm with a constant learning rate. We have changed it into an optimized stochastic
gradient descent algorithm by using the moving means to compute the expectations
and variances and the On-line learning algorithm [4] for ODWE training.

3. The Meta ODWE architecture

In the opposite direction of the problem of superfluous ODWE we mentioned the prob-
lem where the abstraction given by the level of ODWE in unsufficient. This problem is
due to functions ¢ — W, ((p) learned by ODWE, which are very complex. The same
kind of problem can be observed as one tries to solve the task with a classical MLP.
This problem is tackled using the same principle, developped for the main MLP, for
the ODWESs themselves. Then the architecture becomes the Meta ODWE where the
ODWE:s at a high level compute the variations of the connection values of ODWEs in
a lower level that compute... the variations of the connection values of the main MLP.

This principle can also be adapted to create a Meta OWE architecture in which OWEs
in high level compute the connection values of OWEs in lower level that compute...
the connection values of the main MLP.
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FIGURE 2. Example of a Meta ODWE Architecture of level 3 where the torus
represent the sets of ODWEs.

4. Discussion and results

The solutions of the two problems depicted in previous paragraphs have be mixed in
an Incremental Meta ODWE architecture. This shows the interest of an ODWE
approach, since the solution is impossible for the Meta OWE architecture.

In the following, the terms OWE and ODWE will respectively reflect Meta OWE and
Incremental Meta ODWE.

We tested ours architectures on a non trivial problem of multiplexor. In this problem,
the task is to determine the value of a bit in binary data given its address.

Example: 8 bits multiplexor problem
7 6 5 4 3 2 1 0

input binary daa : (OO

input address : @@ =4

desired output :

n+ logz(n)

It is a combinatory problem in which the number of combinations is 2 , where
n is the number of bits in binary data.
The analysis of the problem input space clearly defines perception space as the byte
data and context space as the address. To emphasize the properties of our algorithm we
choose a simple Perceptron architecture with a bias for all MLP in the Meta structure
and an identical context spaces with ¢, = ¢ = address .
In the following table we present the results of training OWE and ODWE! architecture
on the 4, 8, 16 bits multiplexor problem and compare them with the results obtained
with a MLP with one hidden layer (fed with data and address) and two algorithms of

1. Table notation “a/b/c”: a in level 1, b in level 2, ¢ in level 3
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progressive construction rule: GA (Genetic Algorithm) [8] and a growing ANN algo-
rithm (gANN) developped in [1] that dynamically creates a pair of cells representing
condition/action rule for a classe of input patterns.

TABLEAU 1: 4 bits multiplexor (64 combinations)

Algorithm prel:eunl;lel()lelt'oogl? ;tit:l;:)sﬂ % Number of “rules”
GA 10,000 (99.4%) 400 rules
gANN 700 12 rules
MLP 3,900 10 neurons in the hidden layer
OWE 31 5/20/00WEs
ODWE 794 3/1/00DWEs
TABLEAU 2: 8 bits multiplexor (2,048 combinations)
Algorithm preI::,:?::}e:oog]?;tit:T:)so% Number of “rules”
GA 30,000 (90%) 400 rules
gANN 6,000 25 rules
MLP 34,000 30 neurons in the hidden layer
OWE 1,800 9/36/00WEs
ODWE 6,700 8/25/0O0DWEs

TABLEAU 3: 16 bits multiplexor (1,048,576 combinations)

Number of patterns

Algorithm presented to obtain 100% Number of “rules”
GA 120,000 (90%) 1600 rules
gANN 85,000 49 rules
MLP 3,000,000 (99.8%) 100 neurons in the hidden layer
OWE 27,400 17/85/425 OWEs
ODWE 176,000 17/55/274 ODWEs

Three important conclusions can be drawn from these results. The first one is the
power of OWE and ODWE to solve this difficult problem. The second one is the
comparison between OWE and ODWE that shows that OWE learns with less example
presentations than ODWE. But, regarding computation time, ODWE is the fastest
because the incremental architecture provids only few ODWE attachment against a
necessary full attachment of all OWEs in the OWE architecture. We do not say that the
ODWE architecture gives an optimal architecture but it is optimal with regard to
OWE. The third conclusion is very important with regard to a real time computation
with ODWE and can be depicted in two points:

» All ODWE:s in a given level can compute in parallel (as for OWE).

*» The main MLP in a ODWE architecture can compute very fast a general solu-
tion to the task, if it is necessary, and adapt this solution wrt context in the
next cycles.
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The OWE and ODWE have been implemented on Intel Paragon computer with 60
1860 nodes. Then the computation time in each ODWE level is approximately divided
by the number of nodes.

5. Conclusion

These results first show the good performances of our models and more generally, the
validity and the interest of the orthogonal approach that we have been studying for
three years {5], with equal success, on industrial problems {7].

Beyond this aspect, we also want to underline the underlying meaning of this kind of
architecture. For a long time, neurobiological studies have shown the existence of neu-
rons performing filtering on data with classical feedforward links. This kind of connec-
tivity is at the root of most classical ANN models. More interestingly, other
neurobiological studies stress the existence of modulator neurons whose connectivity
is orthogonal to the main information flow mentioned above. These neurons whose
role increases in phylogenesis are at the bases of multisensory integration and context-
dependent behavior [3]. We think that our approach can orient artificial connectionist
models towards a better modeling of this kind of abilities.
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