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Abstract

Thenetwork architecture presented in this paper maximizes correlations between the activities of the
hiddenunits in order to preserve the internal structure of a given data pattern in the high dimensional
space while discounting, to a certain extent, factors that are irrelevant to recognition. Consequently,
the method of updating the weights of the network is exclusively Hebbian. Each unit in the hidden
layer attempts to match its input-driven bottom-up information, from the preceding layer, with the
parameterbased top-down information from the layer above. The parameter-based top-down
information effectively eliminates the need to propagate the error derivatives from the top layer to
the bottom one. Simulation results, that demonstrate the feasibility of the approach, are also
presented.

1. Introduction

This paper presents a predominantly feedforward architecture originally proposed in
[1] for use in on-line linear pattern recognition. A significant incentive behind the
current resurgence of interest in the subject of artificial neural networks (ANNs) lies
in the evidence [2] that these nets could be implemented in parallel hardware which can
be operated in real-time and which makes the nets computationally faster. The network
uses a Hebb-type rule which is local, (that is, only information about the input to a unit
is required in updating the weights on its input links), with a relatively low
computational requirement; an attractive feature for a hardware implementation of any
neurally-inspired architecture.

In section 2, the basic properties of the one-hidden layer model network will be
introduced, together with the model neuron used in the hidden layer. Section 3 describes
the learning rules for the model. The results from two experiments are reported in
section 4, followed by some conclusions in section 5.

2. Network Model

The model network shown in figure 2.1 consists of an input layer, a hidden layer with
a self-organizing character and an output layer. In general, self-organization relies on
the observations of such properties as the mean, variance and correlation matrix of the
input vector [3]. The network of figure 2.1 makes use of the correlation matrix to
preserve, as far as possible, the internal structure of a given data pattern in the high
dimensional space while discounting, to a certain extent, factors that are irrelevant to
recognition. Hence the architecture is simply referred to as a correlation-based network
(CBN). Each hidden unit / consists of a predictor, hp, and a matched filter, Ay (see
inserts). Temporal correlations between units # and j are mediated by the oscillator, m,
which generates a short—term memory (STM) of unit j, 7, for unit 4 and a STM of unit
h, ry, for unit j. The prediction s, (slightly delayed by the unit element DY), and the
net STM r, are then matched by the filter 4, which subsequently generates yj, the
filtered component of s,. The output weight vector is reciprocal, but with its influence
on the hidden units scaled down with a small positive constant ¢. The scaled feedback
biases the unit 4 towards those regions of the input that cause the greatest error at the
output since the magnitude of each weight vector is proportional to its contribution in

285



ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 285-290

reducing the output error. The output z, of the linear output unit k, is a weighted sum
of the filtered hidden predictions y*.

2.1  Model Neuron

The formulation of the CBN matched filter is based on the hypothesis that the
transformation of an input vector x* (upon projection on the vector wy,) defined as
wixt =y, + yiJ(h.j) @D
can be seen as its decomposition into a filtered output ¥}, for unit A, and a "byproduct”
which is a correlation between y* and the cost, Ji(h, j), of using the oscillator m to
cooperate with unit j. Under the natural constraint that
wxt 2 yi + yiJi(h, ), (2.2)
itis easy to see that the cost, J¥(h, j), has a form of inverse relationship with the matched
filter output y%, which is the solution of equation (2.1). In other words,
WXk

‘u VN =
Y TE Ay h=1,2,.. ,H (2.3)

Hidden Layer

Input Layew -
Xy
: \ ‘i Output Layer
- K1
X2
X1

- -
- -
- -
- -
-
-

|
iWniX; =

avkh

Figure 2.1 The CBN Model Architecture.

The objective here is to move hidden units towards regions of the input that contain the
majority of the data. This can be achieved through a minimization of Ji(h, j). The

definition of J4(h,j) is based on the observations that biological neurons generate

functional boundaries between clusters of high activities by making comparisons
between their responses [4]. With this in mind, Ji(h, j) is defined as follows:

-1
h
T ) = it = avy) = gt > miwat — av,) [P
Jj=h
P
= (st — ) (2.4)

where {.| denotes a norm, p is an index that determines the degree of cooperation
between units, g% = 1/n%, n is the number of units in an instantaneous activity cluster
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C} (see figure 2.2a) and mi:; is the correlation length between units handj [1]. Although
distinct unit assemblies can be identified, there also exists weak links (between clusters)
that convey intercluster interactions on presentation of a pattern . Overlaps between
clusters provide a distributed representation for the data [5].

(b)

Figure 2.2 (a) lustration of temporal cluster formation in a CBN. Dashed arrows denote weak
links that convey intercluster interactions. Due to the presence of such overlaps, individual units

have different ¢* vectors. Here, for instance, ¢} = (0,1/2, 1/2,0,0,0)7,
TR T IR T ZR— T
gy = (1/3,0,1/3,0,1/3,0)", gy = (1/3,1/3,0,1/3,0,0)", g, = (0,0,1,0,0,0)",
g% = (0,1/2,0,0,0, 1/2)7, q; = (0,0,0,0, 1,0)". Similarly, in (b), the elements mil. of the
matrix of correlation lengths can vary considerably, for a given unit, or take unit values when the
gains, f, of the mediating oscillators (not shown) are large.

The operation of the model neuron can be visualized by referring to figure (2.3a) and
equation (2.4), from which s} can be interpreted as a positive feedback (for
self-amplification) and the STM, ry, represents the negative feedback for stabilization
(or synchronization). Thus, the interplay between recurrent inhibition and recurrent
excitation (on presentation of a new example) allows aggregates of hidden activities to
coalesce, disintegrate or fluctuate in size. Such a re-wiring scheme may not be far from
that postulated by Poggio etc., as a basis for implementing the movable centres in a
network with Gaussian units [6]. It can be seen, from figure 2.3a, that the output y# is
linear up to the point where it coincides with the filter envelope £2,(s;, s;). This point
is marked by the instantaneous STM, which therefore sets the diameter of the region
across which the neuron will stay linear, (in response to any noticeable changes in w,).
The output y; contracts, from both sides of #, as w, increases in magnitude,
(effectively pushing the neuron into extreme specialization). On the other hand, small
magnitudes of w, lead to a dilation of y/, from both sides of %, and hence exposing &

to a wider range of the input features (represented in other hidden activities).

Minor changes in 7% have the effect of altering the height of the linear region of the
neuron output, and also its orientation with respect to other feature inputs. As shown
in figure 2.3b, the activity of unit /4, previously oriented at an angle @, = tan~ 1(5‘;/:';:),
(w.r.t. other activities) for a given input vector, can be steered to a new angle 6, by a
shiftinits STM to %', relating to a new input vector. The larger the value of r; the wider
is the receptive field of the unit. Therefore, overlaps between the receptive fields of
neighbouring units may result in a continuum of receptive field properties. The shape
of y reveals that units for which ' > s} will incure a higher cost than those for which
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ri < st. This phenomenon also has the desirable effect that a single unit is unlikely to

dominate the wining process at the expense of other units.
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Figure 2.3a The density Figure 2.3b Effects of varying
distribution of the CBN the parameters governing a CBN
model neuron. model neuron.

When the oscillator gain, f, is a large, the activity patterns to which 4 and j belong form
an orthonormal set when:

1 ifh=j
My =10 ifh = j 2.5)
Since the activity of a hidden unit is a "number representation” of the importance of
the corresponding input vector, units with small responses (irrelevant features) are

forced (through lateral inhibition) to relinguish their roles to those with stronger
responses.

3 Learning in a CBN

The mapping performed by the CBN neuron can be quantified by taking advantage of
the consequences of optimizing the system of equations in (2.4), one system per neuron,
rather than having to accept an objective function that is explicitly (or implicitly) given
by a particular self-organizing. algorithm [7]. The CBN is therefore trained by
converting the STMs into the LTM vectors wy,, where (from equation (2.4))

w(h. i [ i
oJu(h, j) _ oJh(h, j) or R
owy,; or dwy iTiTh
The update rule is Hebbian, with a forgetting (STM) term. The parameter #7* is a

learning rate that varies with time. Note that the appearance, in equation (3.1), of the
filter output, y%, implies that individual weights are continuously normalized, during

the learning process, in addition to the forgetting term.

)(P—l)

- a

In the experiments reported in the next section, the output weights were trained through
a minimization of the following cost function:

a=ﬁ§@—@z 32

where N is the number of training patterns,
2= ¢(ka,,y; + vm), (3.3)
h

Vyo is the threshold of unit k and 9 is a linear function.
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4. Experiments and Results

In this paper, the idea is not to compare network architectures and/or algorithms, but
rather, to demonstrate the feasibility of performing computations in real time with little
computational complexity. Two experiments were carried out in this light, with p = 4
(see equation (3.1)). The first involved the use of the computer generated time series
data set (one of the data sets used in the Santa Fe Time Series Competition). The
following brief description has been summarized from [8], where further details may
be obtained. This particular univariate time series data set was generated (100, 000
points in total) by numerically integrating the equations of motion for a damped, driven
particle

-fi% + y% + AV(x) = F() 4.1)
in an asymmetric four-dimensional four-well potential
V=a,x+x+x3+ x?,)% — a,(x’x) — ax, 4.2)

With a forcing period F(t) = Fsin(wf?) in the x3 direction, and a dissipation of -y
velocity. The value of aj has a small drift produced by integrating a Gaussian random
variable and the observable saved is

1
e +0.32+ (2 +0.3)2 + a2+ X2 (4.3)
The data used in this experiment is labeled D1 and D2 in the database [8]. Of the 16666
patterns that were generated from the D1 set, only 5000 were used for training. Figures
4.1 and 4.2 show the test results and the training error distribution respectively.
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Figure 4.1 A plot of the target and Figure 4.2 Training E’; or
network outputs for the time series dist ribution

test set.

The second experiment involved the problem of link admission control (LAC) in the
asynchronous transfer mode (ATM) telecommunication network [9].

rms 0.16
error 0.14
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Figure 4.3 All 6 inputs inputs in the LAC ] . Epoch
problem coded in the STMs of the network Figure 4.4 Training Er-

ror Curve

A CBN of 6 input units, 9 hidden units and 1 output unit was trained as a function
approximator. Figure 4.3 shows the distribution of the network’s STM of all six inputs.
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The rms error over 150 presentations of the entire set the 500 training patterns is also
shown in figure 4.4. The hit rate (or number of correct decisions) for this experiment
was 78%. This is lower than that which is usually obtained with the conventional MLP
[9]. With 12 hidden units, the CBN increases its hit rate to approximately 84%.

5. Conclusions

The suitability of a correlation-based network for real-time processing has been
demonstrated. Lateral interactions between the hidden layer units serve as a means of
preprocessing the input to the network before it reaches the output layer that is only
capable of forming linear discriminant functions. The model neuron used in the hidden
layer ensures that only important features of the input are responded to. Thus, as a unit
learns it becomes more specialized to only a particular subregion of the input space. The
postsynaptic predictors are linear and so, it can be stated that the subspace spanned by
the active units will correspond to the space of the principal component eigenvectors
of the input. The simulation results on two real-world data also confirm the feasibility
of the approach.
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