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Abstract. Let £, be the expected error rate for a neural network trained with
n examples. We present three novel estimators for £, that do not require
additional examples. They operate in two steps. Firstly, £,, is estimated by
training the model on subsets of size kn (0O<k<1) of the original training
sample and measuring error rates on the remaining examples available.
Secondly, adjustment from £, to £, is provided by learning curve theory. For
k=0.632, the proposed estimation process bears some resemblance to the
"632" bootstrap estimator, acknowledged as one of the best performing.
Comparison using a real-life classification task suggests the new estimators
are effective and worth further investigation.

1. Genesis

14 Error rates

Let us consider a learning machine - e.g. a neural network - which would implement a
mapping f between a predictor vector x and a response vector y. Let F be the
distribution of z = (x,y) predictor-response pairs. Via i.i.d. sampling from F, a
training set of size n, T, = {z,,...,z,}, is available. In order to indicate easily the
integrand of expectation operators in the forthcoming equations, it will be convenient
to use a different notation, say F, (=®"F), for the T, distribution. Observations will
be related to their parent distribution with the ~ symbol, i.e. z~F and T,~F,.
Based on the T, training set, the learning machine implements the Jfr, mapping. This
paper focuses on estimating the (average) prediction error on additional samples z, =
(¥0,y0)~F, as measured by some given loss function (z,,T,) = I(yo, f1 (X)) - e.g. the
quadratic cost (y, - an(xO))z. Relevant quantities in this setting are the actual (or
conditional) error rate L(T,) and the expected (unconditional) error L,

L(T,) =Ep Iz T,) (1)

L, =Eg BEp lz,T,) (2)
L refers to a specific training set, and expectation is taken over z only. L, is the
expected value of L for the learning machine at hand, given that n i.i.d. samples are
used for training. Since practical users face a single T, training set, they are mainly
interested in the estimation of the conditional error rate L(T,) - often, quantities that
might rather be deemed estimators for £,, are eventually utilised as estimators for L.
A straight estimator for L is the apparent error A(T,).

A(Tn) = EF I(z, Tn)= %il(zi’Trz) (3 )
i=1
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F denotes the empirical distribution on T,, which assigns a probability of 1/n to each
of the observed z;'s. Since the same examples are used both to tune and to test the fr,
mapping, A(T,) tends to underestimate the conditional error rate. Accordingly, the
difference Opt(T,) = L(T,) - A(T,) is often referred to as optimism. Because actual and
apparent error rates are correlated, more effective estimations of L(T,) are obtained via
Opt (T,) estimators of the optimism and thus have the following form:

L(T,) = A(T,) + Opt(T,) (4)

1.2 The "632" bootstrap estimator

Many real-life estimation or optimisation methods - and connectionist learning is no
exception - would rather use all n observed data for their computations. Even when
dealing with observable statistics from the data (like A(T,)), the problem of
estimating a parameter from F, (like 4, = Ez A(T,), the expected apparent error) is
cumbersome since only a single T, sample is available from the F, distribution.
Bootstrap estimators do with the computer what the user would do in practice, if it
were possible: he would repeat the experiment. The main idea of the bootstrap
methodology assumes that every quantity of interest in the real world - corresponding
to the true underlying distribution F - may be transposed (plugged-in) mutando
mutandis in the bootstrap world which is driven by the F empirical distribution.
Accordingly, observations z~F become z*~Fand training sets T,~F, become
bootstrap samples T: ~F, . Bootstrap samples may be generated at will by sampling

n times with replacement from F. In connectionist jargon, training with a T:

bootstrap sample would correspond to training epochs with # presentations, but with
some given examples of the parent T, set appearing twice or thrice in each cycle,
while other available examples are never recalled. The expected number of different z;'s

ina given T, bootstrap sample amounts to 1 - (1-—%)" = (0.632n. Hence the coinage
of the "632" bootstrap estimator, which has something in common with and inspired

the findings of this paper. The steps in the implementation of the “632" estimator are
listed below:

1. Generate many bootstrap samples T,”, b=1,....B and train the learning machine

with each of these.
2. Apply the bootstrap transposition principle to out-of-training-sample error rates:

for each b this yields a bootstrap replication 2?:11[) () Uz, T,/ p ’(z) =
Out™(T,?). Here I” stands for the indicator function of T,- T, b,
3. Compute the mean of these bootstrap replications, weighted by out-of-bootstrap-
sample occurrences: Outp (T,) = Zf=127=11b(zi)l(zi,T:b )/ 2f=12;'=11b(z,-).
4. The "632" estimator, which corresponds in (4) to Opt (T) = 0.632 [OEB(T,‘) -
A(T,)], is the following weighted mean between A(T,) and Outs (T,):
L3y (T,) = 0.368A(T,) + 0.632 Out (T,) (5)
L¢3, comes from a loose distance argument, whereby test samples in the real world

(z42 T,) are closer to their training set than test samples in the bootstrap world (I%(z,) =
1), by a factor of 0.632. After some computation, one obtains the. following two
approximations [1,2]:
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L=a,+Y (6)
n

Y
Out* =
W= At Sesan (7)

4, =Eg A(T,) is replaced by its A(T,) realisation. OQut* is the expected value of out-of-
bootstrap-sample errors and is estimated by Outp (T,). Formula (5) is finally obtained
by eliminating y between (6) and (7).

As from [1], the Outz (T,) bootstrap estimator can be thought of as a smoothed
version of the leave-one-out cross-validation estimator, thereby trading near
unbiasedness for reduced variability. Indeed, the expectation of Outg (T,) (i.e. Out*)
is about £, [2], which tends to be larger than the £, = £, expectation of the leave-
one-out cross-validation estimator. Regarding the upward bias magnitude, note that
having an average fraction of 0.632# different exemplars out of # training samples is
worse than using a training set limited to the 0.632n different elements, as the latter
case would correspond to L3, as expected value,

2. Novel estimators

2.1. Learning curves

Considering many theorems which have been established in a wide variety of different
settings, behaviour in 1/2 as in equations (6) and (7) appears to be a sort of
"universal” property of learning curves [3]. Both the expected generalisation and
apparent error are involved, yielding the following pair of companion formulae:

L,,z(x+P— (8)
n

ﬁnza-ﬁ (9)
n

o and B depend on the model at hand, and o = 4, = £, may be interpreted as the
asymptotic error rate. For connectionist models, a relevant reference is [4] where the
equations above are derived in a setting suitable for multilayer perceptron (MLP)
networks: (i) unfaithful models are allowed, i.e. it is possible that no set of network
parameters exists which maps the conditional distribution of y given x; (ii) general
smooth loss functions are minimised via (stochastic) gradient descent algorithms.
Regarding the standard implementation of MLP classifiers - one output neuron per
category and class indicator target vectors, formulae (8) and (9) apply to the expected
MSE between binary target values and MLP outputs. Since explicit minimisation of
misclassification rate is not embodied in the objective loss function, the learning
curve formulae are not established for the probability of classification error.
Nevertheless, extending the (8,9) twin 1/n behaviour - with different (o) coefficients
- from a MSE with respect to class indicator targets to a misclassification rate loss
function is a reasonable assumption we shall make as new tentative estimators of £,
are investigated for classification tasks.
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2.2. Three tentative estimators

A customary use of (8) and (9) is model selection within a series of nested models [4],
where these equations are first subtracted to yield the expected optimism O, = L, - 4, =
2P/n and then B is estimated from theoretic arguments. Our approach is quite different:
first, we estimate o and/or 3 in the "bootstrap-like" world via replications with kn
different training samples (O<k<1) and use of the corresponding leaming curve
equations (L, = o + B/kn ; 4, = . - B/kn); second, we plug the estimated parameters
into the "real” world equation (8), possibly replacing 4, by its A(T,) realisation. This
yields the following three tentative estimators, which result from estimation and
substitution of o alone, B alone or both o and B, respectively:

Ly (T) = L, + A, - A(T,) (10)
Ls (T) = A(T) +k O, = A(T,) + k (L, - %) (11)
L5 (T) = L[A-0)a, + A+ k)L, (12)

In each case £, and 4,, are estimated as follows:

1. B partitions of the T, into a TY, learning set and a T, - T,f,, = Out® test set are
designed.

2. For each b, a neural network is trained on Tg, and tested on Out’,

3. The grand averages of the learning and test set losses are used as estimators of 4,
and £, respectively.

In the case of k = 0.632, the difference with the Ay = 1/B Z,A(T.?) or Outs(T,)

bootstrap estimators of 4, or L, is twofold: (i) use of exactly kn different training

examples is enforced in each ka,, set - and not kn on average as for T,” sets; (ii)

elements from T, never occur more than once in any T,f’,, set. The former distinction

is negligible, but the latter entails perceptible differences in the estimations, as e.g.

the discrepancy between Ly 4s,, and £, pinpointed previously.

There is no point in picking the B partitions randomly. We took ka,, to be the subset

of T, cormresponding to the kn consecutive indices, modulo n, starting from (the

integer part of) bn/B. A balanced experimental design of that kind ensures that each z;

is used about kB times for training. The partitions design and the estimation of £,

resembles B-fold cross-validation, but with overlapping test sets and smaller training

sets (if (1 - k) > 1/B).

3. Experimental Results

3.1. Data

The case studies reported here deal with MLP models which classify multidate
multispectral satellite imagery into a large number of landcover classes. The input
data have been extracted from 3-channel satellite images from 2 different dates. Since
no context information is used, the input vector to the MLP classifier naturally
consists of 6 features, i.e. the digital count values of each channel for a single pixel
from the 2-date imagery. Ground truth data D was acquired by field survey. The D
dataset comprised about 3800 labelled pixels representing 20 ground cover classes like
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"vineyard", “"tomatoes, "water" etc...The x; training examples therefore belong to
R*%{0,1}* and MLP networks will have 6 input units and 20 output units.
Comparing resampling estimators is computationally demanding - more than 5000
learning sessions have been carried out in this study. To speed up the learning phase,
the architecture has been restricted to a single hidden layer of small size (6 units). It is
worth stating again that this paper focuses on assessing bootstrap and other
resampling estimators of true error rates, so that model optimality is hardly a matter
of concemn. Indeed, substantial improvement is achieved with larger MLP models [5].
Classification tasks on satellite imagery offer a good testbed for assessing the
operational capabilities of resampling techniques applied to connectionist models. The
main reason is that field surveys are rather resource-consuming: collecting a dataset
which is sufficiently large to represent the main features of the complex actual input-
output mapping corresponds typically to several man-weeks. Therefore, computer
intensive methods may easily become attractive if they spare additional test or
validation datasets.

3.2. Mean Squared Errors

Some faithful measure of the true error rate must be available if various estimators -
namely L.=(5), (11), (10) and (12) - are to be assessed or compared. The "available"
training set size was set to n = 1000 in our experiments, so that with 2800 test
examples remaining the standard error of the empirical L(T,) mean is negligible. Note
that the 3800 labelled examples at hand are viewed as a sample from a much larger
population, not as a census of F; accordingly, Ty, training sets are generated by
sampling without replacement from D, and their actual error rates L(T,qy) are best
estimated from out-of-training-sample data.

The definition as well as the statistical properties of the I estimators depend on the
number of replications involved; B was set to 50 throughout, which is large enough
to ensure that the "resampling” variability of [ is low as against its sampling
variability. Resampling refers here to the various ways of picking 50 bootstrap
samples for (5) or for designing balanced partitions for (10-12). Only the sampling
variability of T, under F, was taken into account as the MSE of the various L. (T,)
estimators were computed. Depending on whether the target quantity is L(T,) or L,
these measures are referred to as Average Conditional Error (ACE) or Unconditional
MSE (UMSE), respectively. Each MSE may be split into a bias and a variance term:

ACE(L)=E [L -LP = [Eg L. - £,]* + Varg [L - L] (13)
UMSE(L)=E,[L - £,]* = [E; L - ,]* + Var L. (14)

These quantities have been estimated by computing L.(T,e0) and L(To0) for 20
different T,y subsets of D, This involves the assumption that a 3800/1000 ratio is
large enough to ensure that extracting sets from D may substitute for sampling from
the true F, as far as empirical MSE estimates are concemed. ACE (respectively
UMSE) estimates for L,, Ly, L5 and Ly, are displayed in bold (respectively

italics) in Table 1, for three values of k. Next follows the standard error of the mean
which is used to compute these estimates. With only 20 squared differences available,
the figures are relatively high, so some care should be taken as the MSE ae
contemplated; yet carrying out enough experiments to reduce substantially the standard
errors would have been quite expensive in CPU time. The third column shows the
negligible squared bias from faithful estimates of £, obtained via 200 replicates.
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ACE
UMSE
kn = 500 kn = 632 kn = 870
L, 3.09] 0.76 3.78 | 097 3.61 | 0.80
154 1 034 | 0.00 | 211 | 054 | 0.03 | 2.06 | 0.51 | 0.03
Lﬁ 2.87 | 0.81 2.80| 0.80 2.82 | 0.82

200 | 065 | 002 | 200 ] 0.67 ] 000 | 224 | 0.69 | 0.04
L, |2-47] 060 2.81| 0.73 2.75 | 0.68

126 | 033 | 001 | 758 | 043 | 001 [ 768 | 046 | 0.00
D 168 | 055 | 013

TABLE1

4. Conclusion

Although the arguments which lead to formula (5) may admittedly be deemed to lack
firm theoretical foundations - as those which lead to (10-12), the practical power of
the "632" bootstrap estimator has been demonstrated across several benchmarking
exercises [1,2]. Indeed, it outperformed on the same data both the straight bootstrap
estimator of Opt ((i)(BOOT) in [2]) and the 50-fold cross-validation estimator (980
training / 20 test samples). However, the L. p and even more the ﬁaﬂ estimators are

appealing contenders which are nearly unbiased, yet with a variance of the same order
as for Lgs,. The practicality of these two estimators is worth further investigation.
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