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Abstract

An implementation of the FUZZY ARTMAP Neural Network has been used to
generate a synthetic two-dimensional turbulent velocity field with local
characteristics, statistical behaviour and structural distribution similar to the
experimentally data measured simultaneously at different locations in a
turbulent wake with eight X-wire anemometer probes. The net, formed by
eight Fuzzy ARTMAP modules working in parallel, one for each
experimental device measuring simultaneously two-component velocity
signals at a given location in the wake flow, has been trained using the first
2000 instants of the real field. Training patterns have been constructed
using historical and adjacent information of the velocity field. The predicted
turbulent field properly describes the underlying turbulence structure of this
free flow as well as its overall statistical behaviour.

1. Introduction

Turbulent wakes and shear layers have been the object of experimental and numerical
analysis since the early studies of Townsend [1], Grant [2] and Brown and Roshko [3]
showed the dominant effects that large scale coherent motions played in the dynamics
of these turbulent flows. A turbulence field can be obtained either by experimentation
or by direct numerical simulation. There have been attempts in the past to describe the
fractal component of a single turbulent velocity [4]. In this paper we present a new
method to obtain turbulent velocity data using a neural of Fuzzy ARTMAP system
previously trained with velocity patterns measured by a rake of probes. The real and
synthetic data are compared using correlations, pattern recognition with fuzzy
ARTMAP [5] and Proper Orthogonal Decomposition (POD).

2. Real data and pre-processing

Two-component velocities measured by Prof. Antonia at the University of Newcastle
(Australia) in the far region of a turbulent wake have been used to train the Network.
Data were measured with eight X-wire probes placed in the horizontal homogeneous
plane of the turbulent wake generated by a circular cylinder. Data files contained 84480
instants of digitalisation for each of the sixteen velocity components measured in pairs
at eight spanwise locations. Fig. 1 includes a sample these time-dependent velocity
signals.
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Figure 1. Samples of the time-dependent velocity records

These signals are grouped in pairs to represent the two-components, u and w, of each
velocity vectors. The odd numbered signals in Fig. 1 correspond to the streamwise
velocity component, u, and the even ones to the spanwise component, w. Fig. 2
shows the corresponding two-dimensional fluctuating velocity field, obtained by
subtracting from each component its mean. This plot is equivalent to a snapshot taken
by an observer moving at the average speed of the flow.
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Figure 2. Sample of the two-dimensional fluctuating velocity field
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To fulfil the requirements of the net, the negative fluctuations were eliminated by
adding a constant value to the data so that they expands the interval [0, 1].

3. The Fuzzy ARTMAP system

The fuzzy ARTMAP neural system [6] is based on the Adaptive Resonance Theory to
avoid the so called stability-plasticity dilemma and consists of a pair of fuzzy ART
modules, art, and art,, linked by an associative memory and an internal controller [7].
The controller is designed to create the minimal number of categories (or hidden units)
to meet accuracy criteria. This is done by implementing a learning rule that minimises
predictive error and maximises generalisation. The dynamics of fuzzy ARTMAP is
determined by a choice parameter o > 0, a learning rate parameter S € [0, 1], and a
vigilance parameter p € [0, 1]. The present system is constructed with 8 Fuzzy
ARTMAP modules, one for each probe or two-component velocity signals measured
simultaneously at a given location in the wake flow.

4, The process

Each module was trained using the first 2000 instants of real data for each velocity
component. The training patterns were constructed using history temporal data for
each velocity component (four previously sampled points) and spatial information
from adjacent sensors (two points sampled by adjacent probes at the immediately
preceding time) so that the spatio-temporal correlation of the velocity field was
introduced in the learning stage. Since the spatial separation between sensors in the
experiments was large compared to the microscale of the flow, the consideration of
more points in the time-history or more information from adjacent sensors in the
training patterns did not improve significantly the statistics and structural
characteristics of the synthetic fields generated by the net.

The output from each module of the neural system is formed by the two velocity data
points at the following instant of time. The lack of one adjacent signal for modules 1
and 8 was solved using as adjacent information signals from modules 3 and 6,
respectively, to preserve the second order correlation.

During the performance phase the eight nets worked in parallel. Instants 2001-2004
were used as input to the nets and the produced output was added to the input forming
a new input pattern (output + instants 2001-2003). The process continued until a data
file of the same dimensions as the original 84480 instants of digitalisation was
obtained. Thus, the trained nets were capable of producing a two-component velocity
field with only one input from the old data file.

5. Results

The predicted and measured velocity fields for u and w are first compared using
classical statistical tools. Fig. 3 shows the auto-correlations for the experimental and
the predicted u-velocity component measured at a given location within the flow and
generated by the corresponding net, respectively. The auto-correlations for the
experimental and synthetic data are very similar, specially for small lag-times. The
excellent agreement between the initial slopes indicates that the turbulent micro-scale
is well predicted by the neural system.
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Figure 3. Auto-correlations for one u-component velocity signals

Table I. includes the mean and variance for each velocity signal. The average deviation
for the mean values is 0.00863 and for the variances 0.00150. Statistical moments of
higher order have not been considered because the size of the original data files was
not enough.

Mean Variance

Sensors | Velocity Real Synthetic Real Synthetic
1 1 0.56238 | 0.57775 | 0.01862 | 0.01866
2 0.49769 | 0.49574 | 0.01398 | 0.01259

2 3 0.60530 | 0.62155 | 0.01858 | 0.01587
4 0.50094 | 0.50252 | 0.01470 | 0.01236

3 5 0.55066 | 0.56437 | 0.01930 | 0.01818
6 0.46471 | 0.46785 | 0.01325 | 0.01098

4 7 0.58463 | 0.60367 | 0.01925 | 0.01690
8 0.52899 | 0.52671 | 0.01400 | 0.01213

5 9 0.58413 | 0.59569 | 0.02081 | 0.01690
10 0.49992 | 0.50404 | 0.01545 | 0.01439

6 11 0.55281 | 0.56939 | 0.02234 | 0.01995
12 0.48627 | 0.49958 | 0.01461 | 0.01379

7 13 0.53160 | 0.53909 | 0.02288 | 0.02315
14 0.47058 | 0.47729 | 0.01339 | 0.01222

8 15 0.52606 | 0.52558 | 0.02384 | 0.02349
16 0.49720 | 0.49268 | 0.01677 | 0.01677

Table I. Mean and variance values for the experimental and predicted data sets
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The second method applied to compare the measure and predicted data sets is pattern
recognising eight different types of coherent structures (Clockwise and anticlockwise
eddies, sinks, sources and four types of saddle points) with an implementation of a
fuzzy ARTMAP Neural Network [5]. Fig. 4 shows the vector skeleton of these eight
structures. Table II includes the results of the classification when applied to both data
sets.
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Figure 4. Structural characteristics of Clockwise Eddies (CE), Anti-Clockwise eddies (ACE), .
Saddle points (SPX), Sources and Sinks

- -

Anticlockwise| Clockwise | Saddle points Sinks & Total
eddies eddies Sources

p | Real | Synt. | Real | Synt. | Real | Synt. | Real | Synt. | Real | Synt.
090] 251 ] 194 | 196 | 142 | 253 | 249 10 21 710 | 606

091] 219 | 167 | 165 | 104 | 200 | 195 6 16 590 | 482
092] 173 | 131 | 141 76 135 | 143 4 9 453 | 359
093] 138 97 103 50 88 104 3 5 332 | 256
0.94] 101 64 69 30 48 62 2 3 159 | 137
095] 64 31 46 20 23 28 2 2 81 93

Table II. Classification of patterns

The results in Table II show that the number of structures predicted for each value of
the vigilance parameter of the net is closed to the distribution found in the
experimental data with differences less than 15%.

Finally, the first eigenvector obtained from POD for the underlying structure of the
velocity field predicted by the neural system projects to the one of the real data with a
correlation coefficient of 0.96. For the second eigenvector this correlation only drops
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to 0.92. These correlation tensor results indicate that the proposed neural system is
capable of capturing the highly non-linear dynamics of the turbulent wake flow.

6. Conclusions

We can conclude that the Fuzzy ARTMAP neural system proposed in the present
study is capable of generating a velocity field with the same local characteristics and
statistical behaviour as the original experimental data set used to train the net. This
method has been applied also to turbulent velocity and temperature data files obtained
experimentally in the wind tunnel facility at Tarragona with the same performance.
The present system can thus be useful to analyse highly non-linear signals pertaining
to other systems of practical interest and represents a step forward towards the control
of complex devices.
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