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Abstract.
We present theoretical investigations via the replica theory of the stor-
age capacities of committee machines with the large M number of hidden
~units and spherical weights. We discuss the physical implication of the
breaking of permutation symmetry and replica symmetry. We obtain the
asymptotic estimates a. of the storage capacities per input unit within
the one-step replica symmetry breaking scheme. In the case of the over-
lapping receptive fields, we find ac ~ (8v/2/(7—2))M+/In M. Through a
simple reduction, in the case of the non-overlapping receptive fields, we
find a. ~ (8v/2/7)vIn M. Both values satisfy the mathematical bound
of Mitchison and Durbin.

1. Introduction

Storage capacity is defined as the maximum number of patterns that can be
stored in a network and is given by the value o, per input unit. Statistical me-
chanics has proven to be successful since Gardner’s pioneering work, especially
for single layer perceptrons [1].

There have been further studies on the storage capacities of more com-
plicated networks. Barkai, Hansel, and Kanter obtained o, = In M/In2 for
a parity machine with non-overlapping receptive fields (NRF) and spherical
weights [2]. Their value is exact within the one-step replica symmetry breaking
(1RSB) scheme and satisfies the mathematical bound obtained by Mitchison
and Durbin [3]. Later Barkai et al. [4] and Engel et al. [5] made extensive
progress for committee machines and found many interesting results. The im-
portance of permutation symmetry breaking (PSB) was first pointed out for
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the committee machine with overlapping receptive fields (ORF). In the limit
of large M they only obtained the replica symmetric (RS) result for the NRF
case that violated the Mitchison-Durbin bound.

In this paper we calculate the storage capacities of the committee machines
with ORF and NRF. Most of expressions and discussions from now on are with
regards to the ORF machine. We simply shift to the NRF case at the end of
calculation. Our calculations are carried out within the 1RSB scheme.

2. Formalism

Let us consider a double layer network with N input units, M hidden units,
and one output unit. For the network to be a committee machine, weights in
the second layer attached to the output unit are set to 1. Let {W;;} be the
set of weights between input ¢ and hidden unit j and let {¢/'} for u=1,..., P
be input values at input units ¢ randomly distributed with variance 1. Qutput

value is given by o* = sgn (M —Hry sgn(hj)>, where the receptive fields h;

are given by N =172 = W€l In this expression the summation over 7 depends
on the architecture of the hidden layer. For a fully connected machine, all the
¢ are swept and N’ = N. The h; are called overlapping in this case. For a
tree-structure machine, only M ¢’s are swept for a given hidden unit j and
N’ = M. In this machine, since the 7 do not overlap for different j’s, the h; s
are called non-overlapping. A pattern is classified by an input-output relation,
{¢!'} > o# € {—1,1}. A pattern can be stored in the machine if 0¥ = o#. The
storage capacity is then defined as the maximum number P, of the patterns
that can be stored reliably in the machine.

The volume V' in weight space satisfying given P input-output relations,
originally considered by Gardner, can be found from the partition function
Z = Tryw,;,) exp (—ﬁ Ele 0 (—0'“0”)). O(x) is the Heaviside step function
and the trace is takenlover continuous weights with a spherical constraint,
Z;W W7 = M and va W7 = N'. As the inverse temperature 8 = 1/T goes
to 00, Z leads to the Gardner volume V. Then via the replica theory the average
of In Z over random input and output values is given by (In Z)) = n=! In{(Z"))
in the n — 0 limit where the double bracket denotes the average over the ¢/.
In the random average o# can be set to 1 without loss of generality.

Order parameters are given by Q7f, = N=! 3. ((W5W/.,)r)) where (- )7
denotes the thermal average and o, p are replica indices. There are three
independent order parameters: Q° for ¢ = p and j # j/, p°® for ¢ # p and
J#7,¢°f for o # pandj=j'

Overlaps between different hidden units, @° and p°”, are found to be
O(1/M), but make important contributions through rescaling: Q° = (M —
1)Q7, 5°7 = (M — 1)p°?. We apply the 1RSB scheme for the order parameter
matrices. ¢; and p; are matrix elements in diagonal blocks with size m of ¢°°
and p°”, respectively. ¢o and pp are matrix elements off the diagonal blocks.
The order parameters can be determined by solving the saddle point equations
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obtained from the stationary condition of the free energy F. Then we find a.
using the fact that ¢; goes to 1 as « goes to a..

3. Symmetry breaking

The output, therefore the energy, of the ORF machine is invariant under the
permutation of hidden units. This property is called permutation symmetry
(PS). In the PS phase the specialization in hidden units does not occur so that
the overlap between different hidden units and the self-overlap on a hidden unit
are not distinguishable. Therefore ¢°?, p?? ~ O(1/M). As « increases, the
phase transition driven by permutation symmetry breaking (PSB) takes place.
In the PSB phase the specialization in hidden units results in the increase of
the self-overlap, i.e., ¢° > 0. The Gardner volume shrinks as « increases. In
the PSB phase the Gardner volume is decomposed into many islands. Islands
correspond to pure states or valleys in the weight space with infinite energy
barriers. Islands are transformed to each other by permuting hidden units.
Replica symmetry breaking is another source of segmentation of the Gardner
volume. If a further segmentation within each of islands separated by PSB is
possible, RSB is diagnostic to this phenomenon.

Interesting physical properties related to the breaking of these symmetries
are found for O(a) > M. Let o be a/M. Investigating the saddle point
equations for o up to O(M), we first find a solution where q; = ¢ = g,
p1 ="po = p, and in the leading order ¢ = p = 0. This is the solution in the
PS phase. Both RS and PS are preserved. There occurs a phase transition at
o = of. For o' above this value we find ¢; > 0 and ¢ = 0. This solution
indicates that PS and RS are broken simultaneously. We can imagine the
picture in the weight space that there are many islands separated by PSB and
each island is also composed of smaller islands separated by RSB.

There is another phase transition at o/ = a}. For o above this value we
have another phase with PSB and RSB, where ¢; > ¢go > 0. Both ¢; and ¢¢ go
to 1 for large a’. One might think the solution recovers RS. For large o’ we
find 1— g1 ~m/a’® 1—go~1/a% —Inm ~ a'2. So 1—¢o > 1— gy, showing
the difference from the RS solution. Recently Urbanczik found o ~ 4.91 and
ab ~ 15.4 [6]. However, the calculation by treating o’ to be large but finite
gives only information: o = a./M — co. We need to find the dependence of
al, on M in the limit of large M.

4. Storage capacities

As o goes to a¢, 1 — g1 and 1 — gg become very small. Other small quantities
include 14 Q, q1 + 51, and go+ Ho. We can show these three quantities are zero
in the leading order in the limit of large M [7]. Tt is possible to estimate a. by
investigating the asymptotic behavior of those small quantities. It is fortunate
that we can deal with the same number of small quantities as that of the order
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parameters, which makes asymptotic calculation tractable.

For convenience we use the following notations: w = 14+ Q — ¢; — P,
v1 = q1 + P1, and vg = qo + Po, where v’ = w/M, v} = v1/M, and v = vo /M.
We assume the following scaling: 1—¢; — v’ = m/c and w = m/d with m — 0,
1/e - 0, 1/d — 0. A similar scaling for q1, 1 — ¢; = m/ec, was used in the
previous study on the storage capacity of the NRF parity machine [2]. We can
reduce to the NRF case by simply setting vy = vo = 0, ignoring the integrations
over z; and 2o, and replacing o/ by a. We also assume 1 — ¢; = m/c in the
NRF case.

We also use the following expressions to write equations in simpler forms:
Q5 = 1-g0— (v — ), @ = (g0 — vp) 3_1» Qo = (90 — UO)QB_I, and
W= (1= g0 — (v — )@~ Y)""*. We assume that Q% — 0, Q) — oo,
Qo — oo, and W — 1, which can be shown selfconsistently from the final
result.

We write —mBF/NM = Gy + &/G,. Gy can be found exactly in the case
of spherical weights, given by

d’vo
(I+d(v1 —wo))
(1)

2Go :ln(1+cQ*))+c(q0—_UQ+iln(1+d(Ul — 1))+
T 14e@Qy "M M

It is much complicated to compute G,. It is written by:

Gr:/Dzo/HDtojln > /Dzln/othlem : (2)
j { iv0

ni=%x1}

cQy 1z _ tur; c \1/2
A= Z o er /Du];[H [m] Tjnjtlj-l_\/_]\_l—(l_m) ,

{rj=%1} j

where t1; = t1; + ’Wﬁl + v/ Qhnjtoj + 5% In the limit of large ¢ we
can expand G, as: G, = f® + fU where fO and fU) are of the zeroth
and the first order in 1/+/c, respectively. f(% is obtained from a partial sum
in Eq. (2) over the 5; and the 7; where 2-;m < 0and n; = —7; for all j.
Then A™ — 1 as m — 0 and ¢ = oco. f(!) is obtained from another partial
sum where each term is given by the condition that ; = 7; = 1 for one j and
2y Mt = 0, mjr = —rj for ' # j. In this case A™ — exp (—65%/2), where
¢=cQy(1+c/Md)~1. & = co is assumed, which can also be shown to be true
selfconsistently.

Technical steps for the computation of f(® and f(1) are given in detail
elsewhere [7]. We find

3)
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and

POMRYELL ,/HMd ) o)

Now the free energy is given, from Egs. (1), (3), and (4), by: —mB+5r =
Go+ o' (f(® 4+ f(1)). The five saddle point equations are obtained from the
stationary condition of F with respect to ¢, d, QF, v1 — vo, and vy. Solving the
saddle point equations, we find the following result: ¢ ~ ((w — 2)3/ 2048)]\/[ o,
d~ \f2]me, v —vo ~ (32/(n = 2))(M'*)™1, vy =~ (x — 2)(Ma')~L, Qf ~
(128/(m — 2)%)a’~%. An additional equation comes from the condltlon that
0F/0m =0 as m — 0, given by:

1 o2 2 1
% VIS ®)

This gives the asymptotic value a, of the storage capacity per input unit

0~In(l+cQp)+

o V2 3vhn ©)

The reduction to the NRF case can be made easily by replacing m — 2 by
7 and o' by a in the above result. Therefore we find ¢ ~ (73/2048)Ma?,
1—gp~ (128/7?)a~? and

\/—vln (7

We observe the storage capacities per weight are smaller than the mathematical
bound ~ In M obtained by Mithison and Durbin.

5. Discussions

In a usual spin-glass phase, ¢o becomes smaller as ¢; gets larger. It implies
that the distance between islands becomes larger as the volume of each island
gets smaller. In this study both ¢; and ¢o go to 1 although ¢; approaches to 1
much faster. We might explain this rather unusual phenomenon by supposing
the following landscape picture in the weight space. Let us imagine a group
of islands in the weight space. As each island shrinks, the distance between
islands also decreases. This is possible when the overall boundary surrounding
islands gets contracting.

Recently Monasson and Zecchina presented an interesting paper [8]. They
used a formalism different from the conventional Gardner approach. Interest-
ingly, they argued that the RSB calculation might be avoided, i.e., the RS
calculation is acceptable. They reproduced the known result for the NRF
parlty machine and obtained a new result for the NRF committee machine,

=~ (16/m)vIn M. This is larger by the factor v/2 than the value in Eq. (7),
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obtained in this paper. We have applied their approach to the ORF committee
machine and the result shows the same difference of the factor v/2 [9]. As dis-
cussed before, RSB is diagnostic to the existence of many separated islands in
the weight space. The phase transition signals such segmentation of the weight
space. In their approach based on the RS calculation, however, no phase tran-
sition is likely to occur, about which we cannot give a clear explanation in the
present stage. Ome can criticize that the 1RSB calculation in our approach
might not be exact. Difference might be reduced if a higher-step RSB scheme,
which seems to be a very difficult task, is applied in one or both of the two
approaches.
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