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Abstract. In a Bayesian approach to online learning a simple approx-
imate parametric form for posterior is updated in each online learning
step. Usually in online learning only an estimate of the solution is up-
dated. The Bayesian online approach is applied to two simple learning
scenarios, learning a perceptron rule with respectively a spherical and
a binary weight prior. In the first case we rederive the results for the
optimal Hebb-type online algorithm for spherical input distribution.

1. Introduction

Recently there has been a lot of interest in studying online learning scenarios
within the statistical mechanics setting (see e.g. [L]-[5]). One of the main
reasons for this is the simplicity of the analysis compared to the analysis of
batch learning. Furthermore it turns out that the generalization performance
of the online learning algorithms in many cases are not much worse than batch
algorithms. Thus one may find a good approximate solution through much less
computional effort.

The kind of Bayesian approach to online learning we will use in this paper is
to approximate the posterior of weights of the network with a simple parametric
form. For each online learning step one may apply Bayes theorem to find the
new value of the parameters of the posterior from the current parameters and
the new training example. M. Opper [5] has done exactly that approximating the
posterior with a Gaussian when learning a rule which is a continuous function
of its parameters. In this case the approximate posterior becomes exact when
the training set grows large.

However in most cases not all the information contained in the training
examples can be contained in the approximate posterior. This is the reason
for the inferior generalization performance of the Bayesian online algorithm
compared to a pure Bayesian batch algorithm.

The rest of the paper is organized as follows. In section 2. the Bayesian
approach to classification is presented. In section 3. we comsider a specific
scenario: learning a simple perceptron rule when the input data is uncorrelated.
We will consider both a spherical and binary parameter prior. We conclude in
section 4. and point out some possible extensions to this work.
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2. Bayesian Classification

To explain the Bayesian approach to classification [7] consider a training set of
m input-output pairs D, = {(s*,7#), 4 = 1,..., m} where the input s* is a N-
dimensional vector and the output 7% = %1 is a binary classification label. The
examples are assumed to be drawn independently from the same distribution.
The probability of the training set given the unknown rule parameterized by w
is p(Dm|w) =TI, [p(s#)p(r#|w,s#)] where we have assumed that the input is
independent of the rule. The total knowledge about the rule after observing m
examples is expressed by the posterior which is found using Bayes rule

plwlon) = LI g

where p(w) is the prior over rule parameters and Z = [ dwp(w) [T, p(T*|w, s)
is a normalization constant. As will be explained below to make Bayes optimal
predictions one need to perform certain averages over the posterior. In general
the posterior is a very complicated distribution for which it is not possible to
to do the averages analytically and it is very computationally costly to perform
them numerically in a high dimensional rule space.

One may also observe from the posterior that the information in all the
examples are needed. This is not what we want in online learning. In online
learning we will disregard the training example once it has been used to update
the parameters we keep track of. Usually the parameters represent the an
estimate of the rule only. To explain Bayesian online learning we add a new
example to get a recursive relation for the posterior

p(W|Dpn)p(r™+ [w, s7+1)

P(W|Dm1) = [ dwp(w|Dpp(rmt! |w, s7+1) 2

This posterior is exact. It still depends on all the whole training set explicitly.
However we can approximate p(w|D,,) with a simpler distribution p(w|An)
where A,, is shorthand for the parameters that characterize the distribution,
e.g. the first two moments of w in the Gaussian case. The updated moments
At is then obtained from the distribution

p(w]Am)p(r™H [w,s7H)

p(W|Am, (5™, 7™ 1)) = Tawp(wlAn)p (7w, 57F7) (3)

This framework is a straight forward Bayesian extension to usual online learning
given a recursive relation for distributions of rules rather than just for a single
estimate of rule.

The parameters of the true function which are picked at random with prob-
ability given by the prior p(w) should have non-zero a priori probability in
the approximate scheme. This suggests that we should choose the approximate
posterior p(w|Ap,) such that p(w|A) = p(w) may be fulfilled.

In a forthcoming paper [6] we will show from a purely information the-
oretical argument how to choose A,,41 optimally (as a function of A, and
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(s™+1 r™+1)). We can therefore prove that the Bayesian approach makes op-
timal use of the information contained in A,, and (s™*1,7™*1) and thus gives a
lower bound for the generalization error of any algorithm using the same amount
of information.

Using the posterior distribution p(w|Ay,) (or p(w|Dp,) in the batch case)
we can calculate the predictive probability [8] of an output label 7 given the
input s

p(rls) = /dWP(WlAm)P(le, s) = (p(rlw,s)) (4)

The Bayes optimal classification algorithm says that one should choose the label
with highest probability 782¥** = argmax, p(t|s). For binary +1 classification
this may be written as 7B%* = sign(2p(7|s) — 1). This will minimize the
error rate because we will only make an error when the predictive probabil-
ity for the correct output is less than one half. Since p(r|s) itself gives the
probability for the output label the average error on the specific input will be
>orexq P(7]8)O(1 — 2p(7[s)) where ©(z) is the step function (@(x) = 1 for
¢ > 0 and 0 otherwise)!. Averaging over the input distribution we get the
generalization error of the Bayes algorithm

Bayes _ / dsp(s) Y p(r]s)O(1 - 2p(r]s)) . (5)

T==%1

In the following we will calculate p(7|s) and €B2Y° for a specific learning scen-
ario.’

3. Learning a perceptron rule

In this section we will consider learning a perceptron rule r = sign (w - ). The
output will be flipped with a probability of «, thus

p(rlw,s) = (1 —k)O (rw-8) + kO (—TwW -s) . (6)

We will consider the thermodynamic limit N — oo and spherical zero mean
unit variance inputs, i.e. 57 = 0 and 535; = d;;. [9] derived the predictive
probability using a cavity argument [10] which is expected to become exact in
this limit. Though w might not be Gaussian the projections on the random
new direction s will according to the central limit theorem add up to a Gausian
variable with mean (w) - s and variance p = 3, ; sisj ((wiw;) — (wi){wy)) =
(w-w)—(w)-(w), where we in the last step made an order ﬁ error by replacing
s;8; with 555 = d;;. Using the normality of w - s it is straight forward to write
down the predictive probability

p(rls) = (1— 26)H (-rﬁ%) +k, (7)

1For comparison consider the so called Gibbs algorithm in which one chooses the output
label in proportion to its probability. The average error is Z‘r::{:l p(7]s)(1 — p(7|s)) which

is clearly higher than the error of the Bayes algorithm.
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where H(z) = [° e=t*/2dt /+/2x. This will allow us to derive the well known
results for the Bayes classifier [11] 7B3¥°% = sign ((w) - s) and the Bayes error
rate [12]
1 (w) - (w)

Bayes — 1— -

€ &+ (1 - 2k) — arccos ( wow) | (8)
The result for the Bayes classifier tells us that we only need the posterior mean
of the weights to make Bayesian predictions. Now we will go on to study two
specific weight priors and corresponding choices for the approximate distribu-
tion p(w|An).

Spherical prior

For a spherical Gaussian prior p(w) = —=xe~""%/2 an obvious choice for
p Var

p(w|An,) is a Gaussian distribution. In [5] the case of a general Gaussian
approximation to the posterior is discussed. However, for the scenario studied
here the situation simplifies [5]. Because both the prior and inputs are spherical
the off-diagonal of the covariance matrix will vanish in the thermodynamic limit.
The diagonal elements will furthermore be non-fluctuating quantities equal to
p/N. Due to the scale invariance of p(r|w,s) the prior will fix the scale of the
weights: (w -w) = N. The final update rule for the posterior mean is

(Wp1 = (w) + §: s np(r™ ™) (9
where p = N —(w ) - (w) and p(7™t1|s™*1) is the predictive probability from
eq. (7). Note that this update rule is identical to the one found in [1] which was
derived using a variational principle for maximizing the average generalization
gain in each step.

To get a recursion relation for the average generalization error eq. (8) (ex-
pressed by the order parameter (w ) - (w)) we take the dot product of eq. (9)
with itself. Since the order parameter is expected to be self averaging in the
thermodynamic limit we can average the recursive relation over the joint prob-
ability distribution of the input and output p(s)p(r|s). Again we obtain the
same results as in [1].

Binary prior

For the binary prior p(w) = []; [6(wi — 1) + 26(w; + 1)] we will choose a
biased binary distribution p(w|An,) =1, [ﬂzﬂié(wi -1+ ﬂzﬂé(wi + 1)]
To derive the recursion relation for the posterior mean of the 7’th weight we have

to apply a cavity argument to relate the posterior mean without the i’th weight
to the full posterior [13]. Doing this we get the following fixpoint equations

(w;) + tanh(z;)

1+ (w;) tanh(z;) (10)

(Wiym1 =
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Bayes

Figure 1: The learning curve € versus m/N for binary weight prior with

N =50 and & = 0.

with

| +1) mA+1 0 1) m+l
Inp(7™7 ™) — (w; ——z Inp(rM 7 |s™ 11

p( l ) ( z>m+1 6<’ll)i>2 p( , ) ( )
where p(r™+1|s™*1) is the predictive probability eq. (7). The second term in
the equation for x; represents the correction due to expressing everything in
terms of full posterior averages. Note that we get fixpoint equations in this
case because the correction term depends on (w;)m,41. In the simulations we
will avoid this problem by setting (w;)m+1 = (w;) on the rhs. We expect
(wiYms1 — (wi) to be order 1//N. The error we make should therefore be of
order 1/N The results from averaging the learning curve (€22 versus m/N)
over 50 independent runs is plotted in figure 1. We observe that in some cases
the algorithm get trapped in a non-optimal solution. In most cases however a
phase transition to the true rule occurs for m/N between 3 and 4.

Ty =

0
O(wi)

4. Conclusion and outlook

We have presented a framework for Bayesian online learning. In usual online
learning a new estimate of the solution to the learning problem is found from
the current estimate and the new example. In the Bayesian online approach we
choose an approximate posterior and find the new estimate of the parameters
of the posterior from the current approximate posterior and the new example.
This approach will fail if the distribution we choose exclude some of the a priori
possible solutions. It is therefore natural to choose the parametric form of the
approximate posterior such that it initially may be set equal to the prior of
weights. We have studied two thermodynamic limit perceptron scenarios -
learning a simple perceptron rule with respectively Gaussian and binary weight
prior. In the first case we approximated the posterior with a Gaussian and
rederived the optimal Hebb-type algorithm [1]. This has also been anticipated
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[5]. In the second case we approximated the posterior with a biased binary
distribution.

There are two directions in which this work could be extended. First of
all setting up a general criteria for how in each online step to make optimal
use of the training information. Secondly the straight forward extension within
the statistical mechanics framework of this approach to multilayer neural net-
works scenarios and the derivation of theoretical learning curve for the binary
perceptron scenario.
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