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Abstract. In this paper, we investigate the self-adaptive source sepa-
ration problem for convolutively mixed signals. The proposed approach
uses a recurrent structure adapted by a generic rule involving arbitrary
separating functions, which is derived from a neural approach. The ex-
pression of the asymptotic error variance achieved by this rule is first
determined (for strictly causal mixtures). This enables us to derive the
separating functions that minimize this error variance. They are shown
to be only related to the probability density functions of the sources.
Simulations are performed in various conditions, ranging from artificial
mixtures of synthetic sources to real mixtures of audio signals. They
show that the proposed approach yields much better performance than
classical rules.

1. Problem statement

Blind (or self-adaptive) source separation consists in extracting unknown in-
dependent source signals from sensor observations that are unknown linear
combinations of these sources. A simple and frequently used model [5] in the
case of bi-dimensional mixing systems corresponds to the source-observation
relationship:

I}

Yl(Z)
Yz(z)

X1(2) + Ar2(2) Xa(z) (1)
A21(2)X1(2) + X2(2) (2)

where X;(z) and Y;(z) are respectively the Z-transforms of the source ;(n) and
the observation y;(n). Aj;(z) is the transfer function of the channel that links
the source j to the sensor i. The corresponding impulse response is denoted
(aij(k))rez hereafter. The mixing system is generally assumed to be causal
and minimum phased so that its inverse can be implemented by a stable and
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Figure 1: Recurrent structure for the separation system.

causal system. A first solution to this problem, based on a neural network, was
proposed by Hérault and Jutten [4] in the case when the mixing filters become
scalar coefficients (A;;(z) = a;;(0) for ¢ # j € {1,2}). A natural extension
of this neural approach, both for the separating structure and the associated
adaptation rule, was proposed by Nguyen Thi and Jutten [5]. Their approach
is based on the recurrent structure of Fig. 1 where the separating filters Cj;(2)
are assumed to be M*"-order Moving Average filters (denoted MA(M)). Their
coefficients, (¢;;j(k))o<r<n, are adapted according to the stochastic rule:

cij(n+1,k) = cij(n, k) + uf(si(n))g(s; (n—k)) i# j € {1,2},k € [0, M]. (3)

The particular case f(z) = z® and g(z) = z was deeply investigated from an
experimental point of view but no theoretical results were provided neither on
the stability of the rule (3) nor on its asymptotic behaviour. In fact, very few
results are available in the literature on these two aspects. Furthermore, they
are generally restricted to very specific cases (see references in [2]).

In this paper, we deal with a more general separation rule (N0) that reads:

cij(n+1,k) = cij(n, k) +pfi(si(n)gi(s;(n—k)) i#j€{1,2},ke[0,M] (4)

where f; and g; are arbitrary functions. The stability analysis of this algorithm
is provided in [2],[3]. In the current paper, we investigate the asymptotic be-
haviour of this rule. More precisely, we derive the asymptotic error variance of
the estimation of the mixing filters. The minimization of this variance (with
respect to f; and g;) then leads to the optimum separating functions. Extended
versions and applications of this rule are then presented.

2. Theoretical analysis
In this section, we consider the case of strictly causal mixing and separating

filters (i.e. a12(0) = a21(0) = c12(0) = ¢21(0) = 0). The algorithm (4) can then
be formulated in vector form as:

6n+1 = an +u H(an)£n+1); (5)
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where g is a small positive adaptation gain and
Bn = [clg(n, 1), ceey Clz(n, M), 621(71, ].), ceey Czl(n, M)]T (6)

€ny1 and H(0,,&,41) are column vectors derived from (4) and not detailed
here for the sake of brevity. The separating state (that corresponds to S;(2) =
Xi(z)) is then

9 = [alg(l), . .,alz(M), azl(l), ceey aZI(M)]T. (7)

Applying the asymptotic convergence theorem established in [1], and related
to the Ordinary Differential Equation (ODE) technique properties, to the al-
gorithm (5) shows that [2], for large n and a stable state 6° (see [2],[3]), 0,
is an asymptotically unbiased Gaussian estimator of §°. Its covariance matrix
is P where P is the unique symmetric and positive definite solution of the
Lyapunov equation:

J(6 )P+ PIT(0°)+ R(6*) =0 (8)

where J(6°) is the Jacobian matrix at the separating state [2],[3] and R(6*) =
> Cov[H(6°,éns1), H(6°, €0)].

nez
The asymptotic error variance of 8, is thus ¢o, = 1i1_|1_1 E[|6,—6°|?] = uTr(P).
n——+00

For white sources, mathematical calculations [2] show that it reads:

S S I TC)

E[le (2:)] Eljg:(x5)] (gi2 + girai) ©)

ij=1 i)
where a; = %f[%%%))jl and (¢;1,¢i2) is a couple of real constants that are only
related to the m!ixing matrix. Differentiating oo, with respect to f; and g; leads
[2] to the extremum functions:

(fiopt (.’L‘), giopt(-z‘)) = ("Vil P;,(x)/px,(x)a Vi2 CL‘) (10)

where p;;, is the p.d.f of the source z; and (¥;1, v42) is a couple of arbitrary (apart
from the stability conditions established in [2],[3]) real constants. This extrem-
ization procedure does not directly yield separating functions that minimize
0o, SiNce 04, still depends on the scaling factors v;; and ;5. This ambiguity
can be removed by using the modified separation rule (N1):

a1 B) = esln filsi(n) gilsi(n—k) ., .
N T Wroy) 7&]6{1’2}’166[1’(3;]

for which all the proportional functions f; (resp. g¢;) yield exactly the same

separation rule (11) and therefore the same . It may then be shown [2] that
the minimum of oo, for (11) corresponds to the class of functions (10).
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Extension to coloured signals: The theoretical results (9)-(10) were de-
rived using the whiteness of the sources as a key assumption. Most often, this
hypothesis does not hold for real applications. When the sources are AR pro-
cesses, we propose a new separating structure that consists of: ¢) the separating
module of Fig. 1 that implements the inverse matrix, it) a whitening module
that drives the adaptation of the separating filters. The associated adaptation
rule (NW1) reads:

fiui(n) gilo(n= k)
HERw VEG ()] ’¢J€{1,2},ke[1,(i\;r)]

where v;(n) is the estimated innovation process of s;(n) provided by a g}*-order
MA whitening filter, 1.e:

C,’j(n-l- 1, k’) = cij(n, ](7)+

vi(n) = si(n) + Ebi(n, k)si(n—k), i€ {l,2}. (13)

k=1

The coeflicients (b;(n, k))ke[l,qi] are updated by a LMS rule with gain v:
bi(n+1,k) = bj(n, k) — yvi(n)si(n — k), i€ {1,2}. (14)

An asymptotic behaviour analysis of (NWW1) [2] shows that the optimum class

of separating functions is then (fiopt(2), giopt(2)) = (—vi1 p$ (2)/ps,(x), viz @)
where pz, is the p.d.f of the innovation process associated to the source z;.

3. Simulation results

In this section, we present some simulation results that validate the theoret-
ical approach developed in Section 2.. The average Signal to Noise Ratio
Improvement is used as an objective criterion for measuring the source sep-
aration performance. It is defined by SNRI = (SNRI; + SN RI3)/2 where
SN RI; denotes the Signal to Noise Ratio Improvement at the output ¢ given

by SNRI; = 10logio (E[(yi(n) — zi(n))?]/E(si(n) — zi(n))?]).

3.1. Validation of the optimization analysis

The first set of simulations aims at verifying that the optimum separating
functions correspond to the solution (10). Tests are simplified by using sources
which have the same p.d.f and by considering uncoupled optimization i.e. (f;
varying, ¢; optimum) and (f; optimum, g; varying). Simple forms for the
optimum separating functions (10) are obtained by considering sources whose
p.d.f belongs to the Generalized Gaussian Family (GGF) defined by ps(z) =

Kg e:cp(—]%;) where Kg and Ag are constants that depend on the paramater

8 > 1. The optimum functions f; are then proportional to sign(z)|z|°~1.
This optimality can be checked by considering separating functions f; within
the family F = {sign(z)|z|*,k > 0} and verifying that the minimum error
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variance is achieved for k = § — 1. F is also used to test the optimality of
the separating function g¢;: in this case, the optimum value is & = 1. In the
experiments, we considered strictly causal MA(4) mixing and separating filters
and white sources. Simulation results [2] show that for each considered value
of # (i.e. 1,2,7) the error variance associated to the separating function f; is
actually minimized for £ = §—1 (i.e. £ =0,1,6) which is exactly the expected
value. They also confirm that the best separating function g¢; is always the
identity function (i.e. £ = 1).

3.2. Application to real signals and comparison with clas-
sical rules

Hereafter we present some simulation results for speech signals. In [2] we show
that speech can be approximated by an AR process and that its MA whitened
version has a Laplace p.d.f (i.e it belongs to the GGF, with 8 = 1). The
optimum separating function fi,p: then corresponds to sign(z). Two types
of simulations are considered hereafter to confirm this result: 1) synthetic
mixing matrix: the mixing and separating filters are strictly causal MA(13).
Three separating rules are tested using the same adaptation scheme (NW1).
They correspond to fi(z) € {sign(z),z,2%}, and g(z) = z. Fig. 2 represents
the SN RI with respect to the adaptation gain u. It shows clearly that f;(z) =
sign(x) highly outperforms the whitened version of classical rules for speech
séparation and confirms the theoretical results of the previous section. 2) real
mixing matrix: the mixed signals are measured using a microphone antenna
located in a room. The varying parameter here is the inter-microphone distance
d that varies from 5 ¢m to 30 cm. Hereafter, we compare the performance of
the separating rule f;(z) = sign(z) associated with the algorithm (NW1) to
the classical adaptation approaches using: f;(z) € {z,23} combined with the
rule (N1). For all these simulations, the function g¢; is set to identity. Table 1
summarizes the performance achieved by these rules. Here again, our approach
yields much better performance than the classical rules. It is also more robust
to bad conditioning that may occur for small inter-microphone distances.

| d(cm) | file) =5 | fi(z) =< | fi(z) = sign(z) |

5 3.7 4.3 7.4
10 5.2 5.1 9.1
15 4.9 4.6 10.0
20 4.8 5.7 9.6
25 5.0 6.3 10.0
30 5.4 6.4 9.7

Table 1: SN RI (dB) for real mixtures, versus inter-microphone distance d and
separating function f;.
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adaptation gain

Figure 2: SNRI with respect to adaptation gain pu.
—: fi(z) = sign(z), - - -t fi(z) ==, ... fi(z) ="

4. Conclusion

This paper presents a generic approach for the separation of two convolutively
mixed signals. In the case of strictly causal mixtures, we derive the expression
of the asymptotic error variance of the estimation of the mixture filters. The
separating functions which minimize the error variance are then derived. They
are shown to be respectively ¢) related to the probability density functions of
the innovation processes of the sources and #7) proportional to the identity
function. The validity of those results and the improvement achieved by the
associated algorithms are illustrated by simulations performed in various con-
ditions using synthetic or real signals and synthetic or real mixing matrices.
These simulations especially show that the proposed approach yields a much
better SNRI than classical rules when applied to real audio signals.
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