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Abstract

Exploratory Projection Pursuit (EPP) is a statistical data analysis tool for
identifying structure in high dimensional data. In this paper we consider two
Neural implementations of EPP. The first; performed under orthonormal
constraints; utilises criteria based on fourth order moments, this is shown to be
a dual for Independent Component Analysis (ICA). The second is based on the
Kullback divergence from normality (negentropy), and is seen to perform ICA
on data which is a linear mixture of independent latent variables. Simulations
are reported which show the exceptional convergence speed of the negentropy
based algorithm when limited a priori knowledge of the source distributions
and a simple momentum based acceleration scheme are employed.

1. Introduction

Exploratory Projection Pursuit is a statistical tool which allows structure in high
dimensional data to be identified. This is achieved by projecting the data onto a low
dimensional subspace and searching for structure in the projection. By defining indices
which give a measure of how ‘interesting’ a given projection is, projection of the data
onto a subspace which maximises the given index will then provide a maximally
‘interesting’ direction. Departures from a Gaussian distribution are viewed as
‘interesting’, as skewed or multi-modal distributions present certain structures within
the data. If we then use an index which is a function of the direction of projection,
index maximisation will then provide a direction furthest from gaussian.

Intrator [1] constructs a neural model for EPP derived from the Bienenstock,
Cooper, Monro (BCM) neuron which is a model of cortical plasticity. Fyfe and
Baddeley propose an alternative neural model of EPP based on the negative feedback
network, a comparative study of both these EPP models can be found in [2]. ICA was
first introduced by Jutten and Herrault [3] within the context of blind separation of
sources (BSS); performing neural EPP driven by fourth order moments has been found
to be equivalent to ICA for data with independent latent variables [7,16]. As EPP is
concerned with driving the network output maximally from Gaussian, a criterion based
on the Kullback divergence of a density and its normal equivalent is also considered.
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2. Moment Based Neural EPP and ICA

. . . T .
An observation of an N dimensional random vector x(¢)= (Jcl (8%, (2, -,y (t)) is
made at time point ¢ such that the vector x(t) consists of N zero mean latent variables

T
s(t) = (sl(t),sz(t), ...,sN(t)) projected onto a set of unknown vectors, ie. x(r) = As(t),
where A is an N X N full rank matrix. To search for structure in the received data,
x(t) » a whitening process is first required so that the data covariance is an identity

C,, =Ithis can be achieved by simple decorrelation learning or PCA learning [4,7].

The reasons for this whitening are set forth in Fyfe [2]: if normalisation of all second
order statistics takes place then the subsequent neural learning will only respond to the
higher order statistics of the data. It is precisely these higher order statistics which
characterise the non-gaussianity of a distribution and which guide the pursuit to
discover maximally non-normal projections. Consider a criterion based on fourth order

moments d)(w)=E{u;‘ }where w is the column weight vector of a feedforward

structure which will project the input x(¢)onto the output u,(t)=w"x(t). [5] shows
4D M N

that the stochastic weight update  Aw; = M=% (£)= Zwi X wx,(t) ¢))
U k=1 =l

is an approximative stochastic gradient algorithm to maximise the specific criterion
function - in this case ®(w)= E{u,‘} - under orthonormal constraints w"w =1. Now
as C, =I= E{uf} = w'C,,w =1, then maximisation of the output fourth moment is
equivalent to maximisation of the fourth order cumulant or its normalised version
which is kurtosis ®(w)=x, = E{u/}-3E{u'}=E{u'}-3. So the EPP learning

searches for a maximally kurtotic subspace which will identify kurtotic structure in the
data. Let us extend (1) to a full square weight matrix and use a network with N inputs

and N outputs, now ®(W)=E{u'}and @is the element - wise derivative of ® then
we have AW =1, [x(t) - WWx (1) |p(x"W) )
This will provide a volume preserving linear rotation, as WWT =1and
det(W)=det(W" )then det(WW")=det(I)=1¢ det(W)=1. This has important

implications in linking moment based neural EPP learning to ICA .
The Kullback divergence of a multivariate pdf from normality is defined as

J(Pu(w))= | pu(u)log(pa(u)/ p6(w))du 3)

this is termed the negentropy. It is shown [6] that negentropy can be written as
J ( P, (u)) =H ( P (u)) -H ( p_(u)) where H(p, (u)) is the entropy of the data density u,

and H ( Pe (u)) is the equivalent entropy of a Gaussian density which has equal mean

and covariance as p,. Comon shows [6] that the mutual information of the vector u
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which for independent components is zero) can be written as,

1(pa(w))=J(p, (u))- X5 (pu)+ %log(]'[ Congir) / det Cuu) @)

The first term is the multivariate negentropy as defined above, negentropy is invariant
under volume preserving mappings, which is precisely the transformation that the

network weights provide, and so J ( P. (u)) =J ( P, (x)) which will not affect the
minimisation of 4). It is also clear that as
C,, = E{uu"} = WE{xx” }W" = WC_ W’ =T thenlog(detC,,) =log([IC,y,,) =0

so the data pre-whitening eliminates the rightmost term in (4). Using Edgeworth PDF

expansions and assuming the PDF’s are symmetric, Comon derives for the mutual
information after whitenin

N N
1(p.(w)=2(p.(0)- £ ()= (. (0) - $52 ©
and so maximisation of the sum of squares of fourth order marginal cumulants
ﬁx? will minimise (5). It is clear that (2) will approximate stochastic maximisation of
i=l
the sum of squares of fourth order cumulants if all components of s have uniform sign
of kurtosis. In practice this only holds for vectors which are mixtures of no more than
three sources due to the manner in which the orthonormal constraint is embedded
within the algorithm, simulations are reported in [16]. An extension of the simple
feedforward architecture has been developed [7,17] and this has been shown to perform

a more robust ICA with much faster convergence. We now consider an information
theoretic indice for EPP / ICA.

3. Negentropy Based Neural EPP and ICA

As mixing of components introduces central limit effects [9], mixtures of
data PDF’s will have a tendency to be Gaussian (illustrative simulations in [10]). So
we seek a data driven transformation which will maximally drive the densities furthest
from normal. From (3) we have the multivariate negentropy as

J ( P, (u)) =H ( Pe (u)) -H ( P. (u)) which evaluated gives
J(W)= %log[(Z;ze)N det(C,, )] + E{log[p,(w)]} )
Taking instantaneous values everywhere, then the gradient terms for (7) are
V{% log|(27¢)" det(C,, )]} = V[% log((2e)" det(C.)) + log[det(W)]]
finally giving V{-;- 10g[(27te)N det(C,, )]} = adj(W)" /det(W) = [wT]'1

We now have VJ(W)= [WT]_l +V{log[pu(u)]} As we are seeking to perform an

ICA then we model the output density as the product of univariate independent
densities.

H(p(w))= X H(p.(w))~ H(pu(w)): I (pu(w) = H(pc ()~ T H(p.())+ I(p.(w))
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For I(p,(u))—> 0 then  J(p,(u))=H(ps(w))-ZN, H (pu(u,.)) . Maximally driving
the network outputs from gaussianity under the parametric constraint that
p.(8) =TI, p(u;) will yield an ICA if the marginal PDF’s are suitably parameterised
to match the independent components of the vector s. For the case of a single

weight%,w log(pu(u)) = p'(u-)x .H,';i plu) /HkN—l pu)= p'(u,- )xj/p(u,-) S0

V{1og(p,(w)) = p'(u )TN A ] x"[p(u)=V,p,(w)x" [p,(u). Amari et al

introduces the natural gradient in [12], as do Cardoso et al [13] though termed the
relative gradient. Implementing the natural gradient we then have

AW o<V = VIWTW =[1+(V,,p, (u)/ pu(w))u” W ®)

This is similar to the form of the maximum likliehood based algorithm derived for
cICA by Pearlmutter and Parra [14]. With suitable parameterisation of the nonlinear
term in (8) we find similarity with this form and the information theoretic based
algorithms of Amari et al [12] and Bell & Sejnowski [11]. A generic form of
nonlinearity is derived in [10] which will allow simultaneous separation of mixtures
which contain both sub and super-gaussian sources. Cardoso [19] utilises information
geometric arguments in building a framework of entropic contrasts for ICA and shows
the equivalence of info-max [11], maximum likelihood [14] and maximum negentropy
[10] approaches to ICA.

To improve on the convergence speed of the simple gradient based algorithm
of (8) we can consider implementing second order information or techniques such as
conjugate gradients. As a pre-cursor to these more sophisticated optimisation
techniques we shall consider a simple momentum based acceleration scheme.
Applying a momentum term to the gradient ascent algorithm (8) the parameter updates
are finally given as '

AW, = nﬁf + 1L, AW, &)
4. Simulation

We consider a linear mixture of five sources, each source is a five second sample of
natural speech (each sampled at 8000 samples / sec). This data set has been used in
[7,15] to test the extension of EPP learning and the non-linear PCA algorithm utilising
Fahlman type activation functions. Typically these algorithms required seven epochs
of learning for full separation, that is 280,000 iterations. It should also be noted that
the data must be spatially pre-whitened, giving additional iterations. As the pdf of
natural speech can be modelled as a Gamma distribution, and less accurately as a
Laplace distribution, we shall parameterise the nonlinear term in (8) with the simple
form of the Laplacian distribution for this simulation.

The left hand column of traces shows the input mixtures, the adjacent column
shows the network output as the weights are adapting, Figure 1. The performance
measure used is the distance of the composite matrix WA from a permutation, this is
shown directly above the output traces. What we see is that after 12,000 iterations (1.5
sec’s) we have complete separation of all five sources. It should be stressed that the
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input data has not been pre-whitened. This corresponds to an increase in convergence
speed of greater than 20 times over moment based EPP and non-linear PCA

algorithms.

A comparison of (9) with the natural gradient form of the info-max algorithm
[11] was made using a mixture of ten sources of speech and music, the momentum
term gave an increase in convergence speed of 1.2~1.5x .
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Figure 1: Input signals and output of network with performance measure.

5. Discussion

We have considered EPP and shown that indices based on fourth order moments and
negentropy will also yield ICA algorithms for linear independent latent variable
models. The convergence speed of the two algorithms has been compared using a
mixture of speech sources, with the negentropy based algorithm exhibiting superior
performance. A simple acceleration scheme has been applied to the gradient based
algorithm and an increase in the convergence speed has been noted. Further work will
include empirical comparisons between the standard stochastic gradient (8), conjugate
gradient and Newton based algorithms, we will also consider a temporal form of the
negentropy based algorithm and apply this to signals which have been convolved [18].
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