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Feed-forward control schemes require an inverse mapping of the controlled
system. In adaptive systems as well as in biological modeling this inverse
mapping is learned from examples. The biological motor control is very
redundant, as are many robotic systems, implying that the inverse problem is
ill posed. In this work a new architecture and algorithm for learning multiple
inverses is proposed, the polyhedral mixture of linear experts (PMLE). The
PMLE keeps all the possible solutions available to the controller in real time.
The PMLE is a modified mixture of experts architecture, where each expert is
linear and more than a single expert may be assigned to the same input region.
The learning is implemented by the hinging hyperplanes algorithm. The
proposed architecture is described and its operation is illustrated for some
simple cases.

1. Introduction

One of the salient characteristics of the biological motor control system is its
apparent redundancy (Bernstein 1967). The controller has to act on a many to one
(MTO) system and has to choose one of the many possible actions to obtain the same
desired target. It was suggested that the nervous system contains an inverse model of
the musculoskeletal system that is contextually being updated (see Inbar and Yafe
1976 for analysis of this idea, and Jordan 1996 for a revieeceht modeling with
artificial neural networks). The inverse problem is illustrated in Fig 1.
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Fig 1. The inverse problem: Given a desired outpufg, find x such that F(x)=ya.

This problem gets more complicated when the mapg#(g) is unknown or
uncertain. Then the inverse mapping should be learned from examples of input and
outputs pairs(x,y). This description is appropriate for biological motor control
learning, and can be also appropriate for certabotics applications. Most of the
proposed architectures and models to solve this problem choose an arbitrary solution
that is the closest to the training set and to the initial conditions of the network (see
for example Jordan 1996).
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The Mixture of Experts (ME) architecture proposed by Jacobs et al. (1991) is a
modular artificial neural network where each module is called an expert and is a
parametric function of the inputs. An input dependent gate chooses the weights of
each expert in the output of the mixture (see Fig 2a). The gate is also a parametric
function, and all the parameters are learned from examples. In the case where each
expert is a linear function and the gate chooses just one expert for a given input, the
ME constructs a piecewise linear appnoeation of the learned mapping. We call

this special architecture Polyhedral Mixture of Linear Experts (PMLE).
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Fig 2. (a) The Mixture of Experts Architecture: Each expert (E) computes a function of
the input. The gate (G) determine the weight of each expert in the output. (b) An
illustration of Hinging Hyperplanes and Hinge function(Bold) in one dimension.

The Hinging Hyperplanes (HH) method proposed by Breiman (1993) is an elegant
and efficient way of identifying piecewise linear models basedata cbllected from

an unknown system. A hinge functiop=h(x) consists of two hyperplanes
continuously joined together at a hinge. An illustration in one dimension is given in
Fig 2b. In an M-dimensional space, takigg1, that isx=[1,xy,...%,] ", the two
hyperplanes are given by=x"/B" and y=x"[B, and are joined together on
{X|X"(B"-B)=0}. The vectorA=B'-f, or any multiple ofA, is defined as thkinge

The explicit form of the hinge function is eitheax(X 3", X' [B) or min(X 3", X' [3).

Given data from an unknown functid(x) one can construct an approximation of
this function as a sum of hinge functions. (see Breiman 1993 for the description of

the algorithm)
oy & _IXTBS X' =0
f(X)_;m(X) h(()a_%’(TEBk_ Xka<O

In this work the HH algorithm is used to estimate ecewise linear model of the
system, and then these estimated parameters are transformed to the PMLE
parameters to enable multiple inverse model. In the next section the PMLE
architecture is described, and proven to be capable of approximating any inverse
function. In section 3, a simulation for a nonlinear functions is given and finally
conclusions are drawn.

(1)
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2. Polyhedral Mixture of Linear Experts
2. 1. The Architecture

The Mixture of Experts (ME) architecture of Jacobs et al. (1991) illustrated in Fig 2a
can be formulated as follows, wherarfe the experts angdaye the gate functions.

y=3a(xo0i(xwW : Yo(x0)=1: glxez0 @

The Polyhedral Mixture of Linear Experts (PMLE) is a special case of the ME
architecture where each expert is a linear function, and the gate function is an
indicator function that separates the input space into a polyhedral partition and
assigns to each polyhedron a unique linear expert, as in equation (3).

) ! if x O polyhedron
flew)=x"0r  g(x6) D otherwise

Where: x=[1,X3,.. %] ", W=[wo,W,...W] . A polyhedron is a subspace of R
composed of the intersection of a finite number of half spaces. This architecture is
actually an implementation of agmewise linear mapping.

®3)

2. 2. The Ability to Approximate Inverse Functions

In this section it will be shown that the PMLE is able to approximate any inverse
map. Let us recall the definition of the ability to approximate inverse function from
Sontag (1992). The following is a property of the class of functgfsfrom R to
R™.
(INV)  For any m and p, any continuous function™:RRP, any compact subset

CIR® included in the image of f, and agy0, there exist som&0 F,"

so that| f(@(x)) -x| <& forall xOC-

Theorem:

The class of functions that are computable by the PMLE satisfies (INV), i.e., any
inverse function can be approximate by the PMLE.

Proof:

Recall the following proposition and lemma from Sontag (1992)

Proposition 2.4: [, The set of maps computable by two-hidden-layer nets with
processors of typd, satisfies (INV). I isH(x)=0 if x<0 andH(x)=1 if x=0)

Lemma 3.6: A function f is pcewise constant if and only if it is computable by a
two-hidden-layer net with processors of tye

Now all we have to add is the trivial observation thateggiise constant function is

a special case of aqumewise linear function, so that the PMLE catisy any
piecewise constant function. Based amiiea 3.6 one can conclude that the PMLE
can compute any function that is computable by a two-hidden-layer net with
processors of type H.  From this conclusion and Proposition 2.4 the theorem is
proven.
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2. 3. Parametrization via Hinging Hyperplanes

In this section the relationship between the parameters of the PMLE (see 2,3) and
the HH function approximation (1) are derived, that is, given the number of hinge
functions K, the hingesa, , and the hyperplangs, B, the parameters of the

PMLE, 8 andw, and the structure of the gate functignare derived.

In order to make the description compact and readily programmable with MATLAB,
the parameters are written in vector and matrix notation as follows: D is the hinges
matrix where each rowk is A, B" and B are the matrices af al;, g}

respectively. These matrices are learned from examples by Breimans algorithm
(1993). The gating function of the PMLE contains a ve€ofor each expert that
describes its side for each hinge function, and each expert possesses a weight vector
W as follows:

©,=[6,, - 6] 0 w,(1) O
0, = +1 ifexpertibelongstox” (N, =0 W, = S : S
0, = —1 if expertibelongsto x" N, <0 Br,(M +1)B

For a given input X, the gate can decide which expert describes the function at that
point.

=K
g(x)=9 K(Oi B‘ign(DT DY)) where 8 (i) = % ! 3
The following algorithm transforms the parameters of the Hinging-Hyperplanes
function approximation to the parameters of the PMLE. The algorithm uses linear
programming (LP) to find the position of each hinge in relation to each expert. LP is
chosen for its efficient algorithmic implementability. See Karniel et al. (1997) for a
more detailed description of this algorithm.

Otherwise E

Initiation: For the first hingeD=4, B*'=4", B=4.
Construct two experts as followss =[+1] o, =[] W :[5+] 7, :[5 ]
For each new hingd

For each expert;

Check the position of the hinge according to expgsri P:
Calculatévin andMx which are the maximum and minimup ef (A,

IfMn>0 andMx>0 the hinge is in one side: W=W+3", 0, =+1

If Mn<0 andMx<0 the hinge is in the other sid&/=W,+[3, 9, =-1

else: the hinge goes through this expert, split to get two experts:

Wya =W, +B" Oy, =+1 W, =W, +pB" 0, =-1
end (for expert)

Add the columng, , 8" andf to the matrixe®, B*,B respectively.
end (for hingek)
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2. 4. Constructing the Complete Inverse Approximation

One can use the PMLE in order to construct the complete inverse approximation.
For the one-dimensional problem, one can invert each expert and get a
candidate-solution which should be validated for being in that experts’ range of
operation. This can be done with the inverse PMLE and the regularization problem
is now reduced to a problem of choosing one of the possible solutions. We can give
each solution an identification number, callpt and add this parameter as a
regularization input. At this point the solution to the problem in Fig 1 can be
illustrated as in Fig 3.

Yo e X y
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Fig 3. The proposed solution to the inverse problem. The multiple inverse (Ml)
approximation can be implemented by the IPMLE.

Further investigation is needed in order to describe the values of the panaaeter
in choosing the appropriate solution, but this stage depends on the specific control
problem, its constraints and goals.

3. Simulations

The first example demonstrates the construction of the complete inverse of a smooth
function which is not injective. We have drawn 400 examples from the function
y=sin(®) Where xwas uniformly distributed in the range [-2,2]. The results of the
HH algorithm are given in Fida.
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Fig 4. Simulation of the HFA. (a) Re-fitting the three hinges from to the examples from
the function y=sin(}). The dots are the examples and the lines are the hinge functions.
(b) The hinge functions over the examples of the 2d function.



ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 155-160

Let us demonstrate the results of the IPMLE: The complete inverse of the target
value 0.5 is the following 4 answers:

Sl iomie(D. Woteta 0510 x 4 10000 1,000 1.0000 10000
» [X] = ipmle(D, W, teta,0.5) o102 07285 16185 0.7kss

And the complete inverse of the target value -0.5 is the following 2 answers:

e el W et x L F0000 10000
» [X] = ipmie(D, W, teta,-0.5) H-1.9304 1.9478

In the second example we examine a two dimensional function. We have chosen to
check the algorithm on the following function which can be presented as a typical
control problem. We have drawn 4000 examples from the following function

y=4 Dcz/(l + xj) +x? —2 Wherex, and x, were uniformly distributed in the

range [-2,2]. This function was taken from Lee and Lee (1995) who used it for a
similar goal with another architecture. The results are presented in Fig 4b.

4. Conclusions

A new architecture for learning the inverse of a redundant system was proposed.
The polyhedral mixture of linear experts (PMLE) can learn from examples a
piecewise linear appraxation of the system and can then be easily inverted. The
structure of the architecture was presented, its ability to approximate any inverse
function was proven, and an algorithm to learn its parameters from examples was
demonstrated. The problem of choosing the proper solution from all the possible
solutions will be the focus of future research.
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