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Abstract�

This paper shows how the relationship between two arrays of arti�cial

neurons� representing di�erent cortical regions� can be learned� The

algorithm enables each neural network to self�organise into a topolo�

gical map of the domain it represents at the same time as the relation�

ship between these maps is found� Unlike previous methods learning is

achieved without a separate training phase� the algorithm which learns

the mapping is also that which performs the mapping�

�� Introduction

A prerequisite for the performance of a skill is knowing the relationship between
actions and their e�ects� For a simple skill this may be achieved by �nding the
mapping from the sensor domain to the motor domain� When these domains
are represented by neural networks it is a case of �nding appropriate synaptic
weights to connect the motor network to the outputs from the sensor network
��gure ��a��� Methods of �nding the mapping in such an architecture have
previously been presented as models of the cerebral cortex ��� 	
�

In the cerebral cortex there is evidence that both sensor and motor regions
are topologically organised and use population coded representations ��� �� �
	
� Representations are distributed over the activity of a whole population of
neurons each of which respond over a range of inputs and have overlapping
receptive �elds �RFs� �	� �
 ��gure ��b��� Such coding is e�cient for generating
coordinate transformations since it allows interpolation between nodes� and is
robust to node failure and noise in individual neuron activations� Learning
to form appropriate connections from the sensor to motor region is equivalent
to de�ning the receptive �elds of the nodes in the motor region� In a similar
way the nodes in the sensor region must learn appropriate receptive �elds to
represent sensory input� Various evidence has been presented to suggest that�
although the cortex forms areas of functional specialisation� regions organise
themselves using similar principles ���� �� �
� The model presented here also uses
the same algorithm to learn appropriate receptive �elds for both the sensor and
motor region simultaneously �the same algorithm is used throughout space��
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Figure �� �a� The architecture used to learn simple sensory�motor
mappings consists of two regions� A motor region generating the motor output
and a sensor region receiving inputs in response to the motor actions� These
regions are joined by connections which will learn the required mapping�
�b� An example of population coding� Top� Each curve represents the
change in activation as a function of input value for each neuron in the one�
dimensional array� The extent of these curves de�nes the receptive �eld for
the neuron� Bottom� The activation values of the population of neurons when
representing an input value of �����

To learn the transformation between sensor and motor space requires train�
ing data covering the range of possible actions� Thus� most algorithms �e�g�
��� 	� �
� go through a distinct training phase during which uniformly distrib�
uted random training data is generated and the inputs to the sensor region and
outputs of the motor region are set to corresponding values from this training
data �as if the data was generated by random motor actions�� The algorithm
implemented by the motor region is thus di�erent during the training phase
from that implemented when the resulting mapping is used� It is unlikely that
neurons in the brain switch between behaviours or that motor actions are under
�external� control during development� Such a distinct training phase is also a
practical problem since any change in the sensory�motor alignment requires a
new training phase to be performed� The method presented in this paper does
not require any separate training phase� the mapping is learned at the same
time as the motor region generates outputs covering the whole range of actions
�the same algorithm is used throughout time��

�� Implementation

Two arrays of nodes� a sensor and a motor region� are connected such that
the output from the sensor region forms the input to the motor region ��gure
��a��� The output activity of the motor array is treated as a population coded
value and decoded as such� The input to the sensor array is a population coded

�� The simplest means of decoding the population code ���� by taking the weighted sum

of activations� is used� value �

P
yjX

pref

jP
yj

where yj is the output activation of node j� and� Xpref
j

is the preferred direction of node j�
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representation of the motor action� To ensure that the motor outputs are asso�
ciated with their sensory consequences the synapses which form the inputs to
the motor layer are modi�ed before the next motor output is calculated� There
are thus two variations of pseudo�Hebbian learning in use� a�erent connections
are modi�ed after the activity of the nodes is found� while e�erents are updated
before the new node activations are calculated� This allows the regions to be
run sequentially while ensuring that the correct associations are learned�

The nodes in both regions form appropriate receptive �elds using a novel�
fully�competitive� self�organising� learning algorithm ���
� Nodes compete� via
lateral inhibition� to represent inputs� and at each iteration a winning node�
which is most strongly activated by the current input� is selected� The lateral
inhibition increases as a function of distance from the winning node� This gener�
ates a topologically ordered map� in which neighbouring nodes have overlapping
receptive �elds� Local inhibition is weak so that nodes in the neighbourhood of
the winner remain active� The output of the network is thus the activity of a
population of nodes� centred around the winner� The selection of the winning
node is a�ected by noise added to the activations and habituation of nodes
which win the competition most frequently� Both habituation and noisy se�
lection are essential for the topological self�organisation of each network ���
�
These two mechanisms are also responsible for allowing the mapping between
regions to be learned� All synaptic weights start at zero strength� so that ini�
tially when the connections to the motor region are weak� the output will be
almost entirely random� As the connections become stronger there is a tend�
ency for the current sensor input to re�activate the previous motor output� and
hence produce the same sensor and motor e�ects continuously� However� ha�
bituation prevents this from occurring for more than a few iterations� allowing
the architecture to continue learning�

�� Results

Two one�dimensional arrays of nodes where used to represent the sensor and
motor regions� Figure  shows the synaptic weights learned after ����� it�
erations with di�erent numbers of nodes in each array� All results have been
generated using identical learning algorithms �including the same values for the
parameters� in both regions� It is clear that the algorithm is fairly robust to
changes in the networks� and that very similar patterns of receptive �elds are
generated in all cases ��st column of �gure �� The networks form well ordered
topological maps in which there is monotonic progression in the preferred input
of each node across the array �nd column of �gure �� The training data is not
random� but is generated by the output of the motor array� Initially� the weight
of lateral inhibition is zero and each node has a similar output activity� the
decoded output is thus the same at each iteration �the mean of the preferred
directions�� and hence the mapping error is initially very low ��rd column of
�gure �� As lateral inhibition increases the range of output values generated
also increases� and hence so does the error� but this increased range of output
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Figure � Results after ����� iterations� �a� Both arrays contain � nodes�
�b� The sensor array contains � nodes and the motor array �� nodes� �c�
Both arrays contain �� nodes� �st column shows the synaptic weights for all
nodes in each region� nd column shows how the preferred input �that input
which most strongly activates a node� varies along the array� �rd column shows
the variation over time of the error between the target position speci�ed by the
sensor input and the subsequent target position generated by the motor output�
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values also provides training data and as the correct connections to implement
the mapping are learned so the error reduces� It can be seen that the residual
mapping error is reduced as the number of nodes increases�

�� Conclusions

Three requirements for a model of the development of cortical mappings are
suggested in section ���

�� Uniformity of Algorithm over cortex�

Since physiological evidence suggests that all cortical regions are organ�
ised by the same developmental process� models of di�erent cortical re�
gions should be organised by the same learning algorithm� Various in�
formation processing and organisational requirements provide constraints
as to the nature of this algorithm�

� Uniformity of Encoding over cortex�

Since the output from one cortical region will form �part of� the input
to other regions there is a need for inputs and outputs to have the same
coding format� Both the requirement for topological organisation and
physiological data support the use of population coding�

�� Uniformity of Algorithm over time�

To learn a skill requires learning the relationship between motor actions
and sensory e�ects� which requires training examples covering the range
of possible actions� The same algorithm that generates the correct output
for a given input must also be that which learns this mapping�

All of these requirements are met by the model described in this paper�
The architecture proposed here is very similar to that used by Salinas and

Abbott �	
 in that it learns the mapping between two population coded arrays�
It has been shown �	
 that given an array of motor neurons whose activity has
sensory consequences� and an array of sensor neurons whose receptive �elds are
de�ned� it is possible to learn the mapping between these domains� provided
that training data contains corresponding sensor and motor values and that the
learning rules are such that the magnitude of the resulting synaptic connections
are dependent on the di�erence between the preferred directions of the pre� and
post�synaptic neurons� This algorithm meets these criteria and so� in common
with their algorithm� it should generalise to networks encoding more than one
variable� However� the architecture presented here improves on their work since
in �	
 the receptive �elds of the nodes in the sensor region are prede�ned �fails
requirement �� and training is by the injection of random data into the motor
region �fails requirement ���
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