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Abstract. In the present paper, Wavelet Networks, are proven to be,
as well as many other neural paradigms, a specific case of the generic
paradigm named Weighted Radial Basis Functions Networks. Moreover,
a fair comparison between Wavelet and more traditional WRBF networks
for function approximation is attempted, in order to demonstrate that
the performance depends only on how good the chosen mother/activation
function “fits” the function itself.

1. ‘Introduction

Wavelet Networks and Neural Networks (in particular, Radial Basis Functions)
are very often used as non-parametric estimators in the fields of function ap-
proximation and system modeling.

Wauvelet Networks (WNs) [3, 4] are an implementation of Wavelet Decom-
position, a technique which has recently emerged as a powerful tool for many
applications in the field of signal processing, such as data compression and func-
tion approximation. The basic idea of Wavelet Decomposition is to expand a
generic signal f(x) € L?*(R™) into a series of functions obtained by dilating
and translating a single function 1(x), the so—called mother wavelet.

Radial Basis Functions (RBF's) [7, 2] are a class of neural networks partic-
ularly suited to function approximation and interpolation. The basic idea is to
expand a generic function f(x) into a series of identical radial basis functions
(called activation functions), each one centered on a different point in the input
space (usually, on a multi-dimensional lattice of points). The most commonly
used activation functions are monotonically decreasing when moving away from
the centers.

So far WNs and RBFs have been considered as two rather different ap-
proaches to the task of function approximation, and most paper published on
the subjoct are willing to prove that one method is far better than the other due
to some hot point specific of the method. In practice, it has been proven [2] that
many ncural and fuzzy paradigms are nothing but specific cases of a generic
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paradigm called Weighted Radial Basis Functions (WRBFs), which therefore
behaves as a neuro-fuzzy unification paradigm. In this paper we will show that
also WNs are a specific case of WRBFs, therefore it can easily be shown that
WNs and RBFs can behave (when properly designed) exactly alike.

By extending to WNs the results presented in [2], it can be shown that also
the initialization and learning rules of WNs and RBFs can be unified, implying
that any rule which can be applied to one of the networks can immediately be
applied also to the other type of networks.

As the equivalence of WNs and RBFs is not yet widely known, it of-
ten happens that WNs and RBFs are compared with each other under non
equivalent conditions. Therefore, all the differences between WNs and RBFs
pointed out in literature do not depend on intrinsic peculiarities of cither
method, but on side effects of the chosen initialization procedure, training rule
or mother /activation function.

Aim of this work is to compare WNs and WRBFs fairly, that is, using
the same initialization and learning rules for both types of networks. The
main results of the work is to prove that the network which performs the best
is neither of the two a-priori, but it depends only on which of the chosen
mother/activation functions best “fits” the function to be approximated. For
instance, a periodic function and an exponential function are better approxi-
mated by a WN with an “oscillating” mother wavelet and by a WRBF with
Gaussian activation function, respectively. This proves that, in practice, WNs
and RBFs both behave as parametric estimators.

The paper is organized as follows: in Sec. 2. WN are presented, while Sec. 3.
introduces WRBF networks and shows that WN are a specific case of this latter
paradigm. In Sec. 4. some simulation are presented in order to compare the
performances of the two examined networks.

2. Wavelet Networks

In the following we shall consider only radial wavelets in L2(R"™), for which
P(x) = g(I| x ||) where ¢ : R — R. Radial functions are characterised
by a radial Fourier transform; a function is admissible as a wavelet if Cy, =

.- .. 2 . .
(2m)" (;x’ lW‘—dh < oo and Cy, is independent of w.

For the Discretc Wavelet Transform, the parameters which determine the
dilation and translation of the mother wavelet are discretised, namely a count-

able sct is extracted, such that the corresponding wavelet family

{«/;A, = det(Dy/*)[Di(x — t4)] : t € R®, Dy, = diag(dy),dy € R" k € N}
(1)
is a basis for the functions in L2(R"™). To this aim, additional conditions arc
required both on ¢ and on the parameters discretisation. The obtained basis
is not necessarly orthonormal and can be somehow redundant: in this latter
case family (1) is more correctly referred as frame. Usually the parameters set
is a regular lattice, namely dy = [@?'...a?"], with pl...pn € Z, and t;, = mg,
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where m € Z", and « and f are positive scalars (a > 1) which define the
step sizes of the dilation and translation discretisations. The choiche o = 2
(in this case the lattice is is often referred as dyadic) and 8 = 1 is particularly
convenient from the computational point of view and is widely adopted (3, 6].
In practice a signal f is approximated by the weighted sum of a finite number
of functions in (1) plus a bias which helps the approximation of functions with
nonzero mean value:

K
9(x) =D arp[Di(x — tx)] + b (2)

k=1

which is analogous to the output of a 2-layer neural network, provided that
the activation function of the hidden neurons are wavelets [4]. Such network
has been named Wavelet Network (WN). WN with radial wavelets presents the
main advantage of an efficient initialisation procedure derived from the wavelet
decomposition [5]. Furthermore a fast procedure based on the Orthogonal
Least Squares (OLS) algorithm, a method already applied to RBF networks
8], is provided for choosing among all the basis functions those which give
the greatest contribution to the approximation. Depending on the form of the
function to be approximated, the expansion of a signal into a wavelet series can
be more efficient than other solutions, in the sense that fewer basis functions
can be needed for achieving a fixed approximation error. This is due to the
timc—frequency local properties of most wavelets, which make them particularly
suitable to represent short-time high—frequency signal features. Fewer basis
functions and more efficient initialisation lead to smaller networks and fast
training. On the other hand some signal features are better represented by the
lincar combination of different function, thus WN are not suitable to fit any
curve.

3. WRBF Networks

A WRBF neuron is associated to a set of parameters: an order m € R, defining
the neuron’s metric; a weight vector w, a center vector ¢, a bias b and an
activation function F(z). The mathematical model of a WRBF necuron is:

y =HE®) (x;¢,w,b) AF (Wl A (x —c) + ) (3)
where w = [wy, ws, ..., wn]T and A,,(x —c) is a vector of R™ whose entries are:
(zi—c;)) form=0

i=1,...,n 4)
|z; —ei|™ form #0

Am,i(x - C) é

and F(z) is a generic activation function; tipical choiches for it are sigmoidal,
cxponential and linear functions as well as radial wavelets.
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The MLP and RBF neural paradigms can be reconduced to WRBF networks
[2]; here we underline that also WN are a specific case of WRBF, provided that
we define d = [w},wi, ..., w2]7, D = diag(d), ¢(x) = F(|| x ||), m = 2 and
b = 0. Undecr these hypotheses, we have:

F(wlAy(x —¢)) = F(Ay(dT(x - ¢))) =9(D(x —¢)) (5)

and the analogy with the functions in the set defined in (1) is thus evident.
Tab. 1 summarises all the unification results.

[ Kind of layer | Parameters of the equivalent WRBF layer |
MLP m=0, ¢=0, F(z) sigmoidal or linear
RBF hidden m=2, b=0, F(z) exponential
WN hidden m=2, b=0, F(z) wavelet
RBF and WN output | m=0, ¢=0, F(z) linear

Table 1: The layers of several network structures as particular instances of a
WRBEF layer.

The generalised learning rule based on the gradient descent algorithm, which
has been defined for WRBF networks [2], can be applied to WN as well. This
is also true for all the methods which optimise the backpropagation algorithin,
such as Rprop and Conjugate Gradient Method [1]. On the other hand, the fast
initialisation procedures adopted for RBF networks and WN can be applied to
WRBF nctworks with different activation functions and metrics. Consequently
we expect that, provided that the initialisation procedure is fixed, the approx-
imation capabilities of a WRBF network depend on how the chosen activation
function “fits” the data.

4. Numerical Results

Our first two simulations concerns the approximation of the following two func-
tions:
y=(z+1)e 72 (6)

y = sin(drz)e” %! (7)

by means of a two 2-layer WRBF networks. For both networks the hidden
layers have rn = 2 and b = 0, but the former has exponential activation function
while the latter adopts a the wavelet known as mezican hat, whose expression
is (x) = (n— || x [|?)exp(— || x ||? /2) where x € R?. Both networks have
lincar output layers, i.e. m = 0, ¢ = 0 and F(z) linear; therefore the latter
network could also be referred as a WN, as discussed in the previous sections.
The initialisation algorithm for both networks is the one described in (6],
namely a library is builded by dilating and translating the original function so
that translation and dilation parameters form a dyadic grid. This is not the
only possible solution. A different approach could consist either in clustering
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Figure 1: a) Comparison between the function (5) and its approximations
obtained by means of two WRBF networks having exponential and wavelet
activation functions in the hidden layer. b) Comparison between the function
(5) and its approximations obtained by means of two WRBF nectworks having
exponential and wavelet activation functions in the hidden layer.

the training set and choosing one or more functions for cach cluster or in
considering one or more functions for each data point [7]. This latter option
is computationally expensive, especially when the dimension of the data set is
considerable. Once the library has been built, the most contributive functions
in the library are selected via the OLS algorithm until a fixed maximum number
of functions is reached [8].

Fig.1.a and Fig.1.b show the results obtained with 14 neurons in the hidden
layer. It is evident that function (6) is more suitable than (7) to be approxi-
mated by sum of exponentials and therefore in this case the performance of the
WN are worse; the contrary holds for function (7). In Fig.s 2.a2.b and we com-

- WRBF, - - WN - WRBF. - - WN

10 Tl -

Figure 2: a) NSRMSE as a function of the number of neurons in the hidden
layer for function (5). b) NSRMSE as a function of the number of ncurons in
the hidden layer for function (6).

pare the performances of the two kind of networks by varying the number of
neurons in the hidden layer: as a performance index we adopt the Normalised
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Square Root Mean Square Error (NSRMSE) defined in [4], namely:

NSRMSE = 1

Oy

(8)

M ~
Z[f(%t) ~yil?

where M is the number of the data in the training set, (z;,1;) are the sample

points, g, is the standard deviation of the output values and f is the function
estimate obtained with the network.

We perform some simulations also in the two-dimensional case; we try to
approximate the following two functions of the independent variables = and y:

z = 2sin (we‘wz"’f) 9)

z=2(1—-z%- :1/2)6”“”2“y2 + 4sin [(m2 + y2)e'(‘”2+-”2)/2] (10)

The results in terms of NRSMSE are reported in Tab.s 2.a and 2.b: as expected,
function (10) is more suitable than (9) to be approximated by a sum of two—
dimensional mexican hat functions. ‘

[ No. ncurons | exp. | Wav. | [ _No. neurons [ exp. [ Wav. ||
30 0.018 0.24 30 0.4 0.25
40 0.013 0.20 40 0.37 | 0.20
50 1.71073% | 0.16 50 0.36 | 0.17
60 7.7107% [ 0.15 60 0.35 0.1
a) b)

Table 2: a) NSRMSE obtained with the two different networks for functon (8).
b) NSRMSE obtained with the two different networks for functon (9).

5. Conclusions

In the present work we show that WN are a specific case of WRBF nctworks;
WN have been widely adopted in function approximation, thus we guess that
also WRBF networks in their more general form can be efficiently applyed
to this purpose. The experimental results confirm that the performance of a
WRBF network heavily depend on how well its activation function “fits” the
function to be approximated, thus traditional WRBF are as good approxima-
tors as WN but with different kind of functions.
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