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Abstract.

Composition methods are methods arising from differential geometry for
the integration of ordinary differential equations. We apply them here
to arrays of Chua circuits. In these methods, we split the vector field of
the array of Chua circuits into its linear part and its nonlinear part. We
then solve the elementary differential equation for each part separately,
and recombine these contributions in a sequence of compositions. This
gives rise to simple integration rules for arrays of Chua circuits, which we
compare to more classical approaches: the fixed time-step explicit Euler
and adaptive fourth-order Runge-Kutta methods.

1. Introduction

The standard methods for the time-integration of ordinary differential equa-
tions (ODEs) are schemes such as the Euler method or the Runge-Kutta
method. These schemes are straightforwardly applied to the integration of
continuous-time recurrent neural networks, in particular Cellular Neural Net-
works consisting of arrays of Chua circuits. However, physicists have recently
introduced a completely different class of methods for the solution of ordinary
differential equations: the composition methods [2, 3]. The spirit of these meth-
ods is that if the vector field of the differential equation is the superposition
of elementary vector fields, we can approximate its solution by composing the
flows of the elementary contributions. Composition methods are particularly
useful for numerically integrating ODEs when the equations have some simple
structure. The authors have recently introduced them in the field of neural
networks [4].

We will first present the elements of Lie algebra theory necessary for the ex-
position of composition methods. We will then show how to use this theory for
the integration of ordinary differential equations. We will apply these methods
to an array of coupled Chua circuits and we will compare the performance of
these methods with those of standard methods: fixed time-step explicit Euler
and adaptive fourth-order Runge-Kutta.
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2. Arrays of Chua Circuits

To show the potential relevance of composition methods to the field of neural
networks, we present their application to the simulation of Cellular Neural
Networks (CNN) of the type arrays of Chua Circuits. These neural networks
are effective for parallel signal processing and real-time simulation of nonlinear
spatio-temporal phenomena.

The Chua circuit is a nonlinear electrical circuit. We can write it as a
state-space model or ordinary differential equation of the form

z —a a 0 z g(z)
v | = b -b 1 y |+ 0
z 0 —-c O z 0
with g(z) a piecewise linear function: g(z) = —(a/2)[(s1 + s2)z + (so — s1)(|z —

Bi| = 1B1]) + (s2 — s0)(lz — Ba| = |B2])]-

Moreover, we can consider the more general systems of Cellular Neural
Networks. For example, we can have a CNN formed by an array of Chua
circuits, where the neighbors are coupled by linear coupling. If we have n
circuits having each three state variables, the equations describing the evolution
of the system are

i —a a O T; g(zi) p-X7=1&ii %5
g |=| b b 1w |+ O |+ 0
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with i = 1,... n and where the coupling term &;; is equal to one if circuit i is
connected to circuit j, and equal to zero else. What we can remark is that,
however large the number of circuits is, the system is made of a large linear
part (the first and third terms) and a nonlinear part that consist of n identical
decoupled piecewise linear equations.

3. Lie algebra theory

The Cellular Neural Networks under consideration here are described by a
system of ordinary differential equations #(t) = A(z(t)). We write the ODE
as #(t) = A(z(t)) to follow the conventions of Lie algebra theory. We can
write its solution, as a function of the initial condition o, in two forms: as
a flow z(t) = ®(zo,t) (as is standard in the dynamical system literature), or
as an exponential solution z(t) = et4z, (as in the Lie algebra literature [1]).
The latter notation should read: “z(t) is the image after time ¢ of the initial
condition o under the flow of & = A(z)”.

Lie algebra theory is an important tool in physics [1] and an essential part of
nonlinear system theory. We need to define a new operation: the Lie bracket of
two vector fields, which is again a vector field. In the particular case of vector
fields on R™, we can express the bracket as

[A,B] = BVA — AVB
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The main mathematical tool we need is the Baker-Campbell-Hausdorft
(BCH). This formula gives an expansion for the product of two exponentials of

elements of the Lie algebra [1]:
HAAB _ HA+B)+5[A B + A AB)+[B,[B,AD +.-. ()

3.1. Integration of ordinary differential equations by com-
positions

We now look at how to solve ordinary differential equations using compositions.
We refer the reader to [4] for more details. Suppose we want to solve the ODE
&(t) = X (a(t)) for a time-step of At. The problem becomes that of building an
approximation to eAtX as we have that z(t) = e2tX z,. Suppose, in a first step,
that the vector field X is the sum of two vector fields: X = A + B, where you
can integrate A and B analytically or much more easily than X. Then we can
use the BCH formula to produce a first-order approximation to the exponential
map:

BCH: et X =et4.etB +o(t?). (2)

The relation of first-order approximation (2) between the solution of A and B,
and the solution of X is the essence of the method since it shows that we can

approximate the mapping arising from the solution of an ODE by composing
simpler maps (Fig.1). By using the BCH formula repeatedly, we can show that
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Figure 1: e (zo) = e*4.e"

the following symmetric leapfrog scheme is second order:

Leapfrog: etX = eiAetBesd+o(t?),
= S(t) + oft?).

4. Composition integrators

Higher-order integrators are possible as we can see in Table 1. The error
associated to each method is the effective error constant defined in [3]. We
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Table 1: Formulas for the composition methods

present two types of methods: the symmetric methods and the symmetric
methods composed of symmetric steps. The symmetric methods are presented
directly as a product of exponentials, while the symmetric methods composed
of symmetric steps are presented as a product of symmetric leapfrog steps
S(At). The leapfrog is the simplest method to implement, while the fourth-
order symmetric method (error=0.0046) is the most efficient. A remark of
fundamental importance is that we can replace the exact solutions of eAt4 and
eAtB in the symmetric methods by any first-order integrator (e.g., I+ AtA =
M4 4 o(At?)) and still guarantee the same order of approximation. Similarly,
in the symmetric methods composed of symmetric steps, we can replace the
leapfrog S(At) by any second-order symmetric integrator.

5. Simulations

To show that the composition method is an efficient integration method, we will
use it to simulate the behavior of an array of Chua circuits producing a spiral
wave. We have compared it to a Runge-Kutta adaptive-time-step method and
a simple Euler fixed-step method. We have chosen a fourth-order composition
method with different time-steps (At = 0.01, At = 0.02, At = 0.05), a first-
order Euler method with different time-steps (At = 0.001, At = 0.002, At =
0.005), and a fourth-order adaptive Runge-Kutta method (where the time-step
is automatically adaptively set). In a previous experiment [5], a fixed-step
Euler method with time-step At = 0.0005 had been used. The appropriate
parameters and initial conditions to generate the spiral wave were the same as
in this previous experiment.

We found that the Euler method with time-step At = 0.002 was twice as
fast as the adaptive Runge-Kutta method while it had a sufficient accuracy.
We show in Figure 2 snapshots of the activity of the z variable on a grid of
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50 % 50 Chua circuits at times t; = 20,1y = 60, 5 = 100 for the Buler method.
If we try to increase the time-step of the Euler method, we see that instabilities

Figure 2: Snapshots of the spiral wave for the Euler method (f; = 20tz =
60, t; = 100).

appear for At = 0.005, which make the integration unreliable as we can see in
Figure 3 where we show snapshots of the activity of the x variable at t = 10.

Figure 3: Suapshot for the Euler method with At = 0.005 at time § = 10.

In contrast, we can use a much larger time-step for the composition method
because of its good conservation properties. This larger time-step comes at the
price of a higher number of operations per iteration since the method contains
a number of sub-steps. But as a whole, the fourth-order composition method
with a time-step of At = 0.02 was twice as fast as the Euler method with
a time-step of At = 0.001 for a similar accuracy (Fig. 4). At At = 0.05,

Figure 4: Snapshots of the spiral wave for the composition method (tg = U, t; =
20,ty = 40,13 = 60,14 = 80,15 = 100).

instabilities are too severe to make the integration acceptable (Fig. 5).
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Figure 5: Suapshot for the composition method with At = 0.05 at thne ¢ = 10

6. Conclusions

We have presented a new class of integration rules for arrays of Chua circuits:
the composition methods. We derived these methods from Lie algebra theory
through the use of the Baker-Campbell-Hausdorff formula. Not only do these
methods shed new light on the dynamics of arrays of Chua circuits, but they
provide enhanced performances for the simulation of these arrays.
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