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Abstract.

Our problem concerns the joint interpretation of UltraSonic and InfraRed
measurements provided by a composite proximity sensor, in order to ex-
tract geometrical and morphological features of a flat target. Neural
networks are applied here both for modeling and for classification pur-
poses. Physical knowledge of the sensing modalities helps in simplifying
the network structure, in order to minimize its complexity, save comput-
ing time and make the system suitable for real-time applications.

1. Introduction

Sensor integration represents an active area of investigation in the field of
robotics and industrial automation, as a key feature to improve the percep-
tual abilities of complex robotic systems. In particular, proximity sensors seem
to be quite appealing for their acceptable cost-to-performance ratio, as com-
pared to that of more expensive sensing techniques, e.g., vision or laser range
finding.

Among proximity sensors, ultrasonic (US) and infrared (IR) detectors are
particularly interesting in real-life applications, as one of their most interest-
ing features is that IR reflecting behaviors have well known characteristics of
complementarity {1]; fusion of data provided by different proximity sensors is
hence a crucial point to partly overcome their limitations. In [2] a composite
sensor has been proposed, which integrates into the same device an US range
finder (the couple of emitting and receiving capsules) and an IR detector (the
light emitting diode and its coupled phototransistor); in [4] a first attempt was
made to accomplish a strategy which uses the spatial information provided by
the US for interpreting the signal coming from the IR sensor. The aim was to
estimate the spectral reflectivity, what we call the ”color”, of a flat target, in
view of supporting the navigation of a semi autonomous vehicle, as a sort of
”label recognizer”. In the present paper the same problem is addressed, but a
novel approach based on neural networks allows a faster design of the sensor fu-
sion system as well as better performance, both in terms of lower measurement
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error, lower classification error probability and fewer measurements needed for
making a decision.

The paper is organized as follows: in Sec. 2. some remarks are given on the
extraction of the sensor-target relative position from the US measurements;
Sec. 3. is devoted to processing the sensorial data by means of a composite
neural scheme, and finally some results are presented in Sec. 4..

2. Remarks on the sensing device

The hardware of the composite proximity sensor has already been described in
[2): we just recall that robust analog signal processing techniques have been
applied in order to cope with the low-cost, off-the-shelf components employed.
In the application discussed here, a linear array of three sensing units is em-
ployed, but the IR measurement is extracted only from the central one. The

.measurement of the peak amplitude of the IR radiation detected by the central
sensor is performed by means of an A /D converter integrated within the control
unit, i.e. a MOTOROLA HC11 microcontroller; its limited resolution (8 bit)
reduces the possibility of exploiting the IR output in a proportional manner
when it is small, namely for relatively far targets. An additional logarithmic
amplifier can improve detector performance for far objects.

The center-to-center spacing of the three US sensing elements is h = 0.04m:
the i-th sensor computes a noisy estimate r; of the target-sensor distance d;.
In conditions of thermally compensated US sensors, each range measurement
r; can be modeled as: r; = d; + n; where n; is a zero-mean, Gaussian, random
variable with variance o2. Without any loss of generality, we assume that the
measurements errors performed by the three sensors are independent {in our
case o; = 0.7-10~%m).

The US device is able to estimate the distance d of a planar surface and its
orientation § with respect to the sensing device, namely the angle between the
target surface and the line joining the sensor center and the incidence point by
exploiting the following relations [3]:

. r3—n
d= 6 = arcsin 1
ra (252) m
Thus, the US position estimator output can be represented as zys = vus+eus

T . .
where vyg = [ d 0 ] and ey s is a random vector composed of two additive,
zero-mean, jointly Gaussian noise components.

3. Neural processing of the sensorial data

The problem to be addressed in order to interpret the data coming from the
IR subsystem is twofold: first of all a model of the IR output signal vrg has
to be developed to express its dependence on vys and on the target color.
Afterwards, a methodology for recognizing the target color from the sensing
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device outputs has to be developed. These issues have already been discussed
in [4], where the IR analytical model has been empirically developed on the
basis of some results available in literature and of the knowledge of the physics
of the sensor.

In the present work, a neural approach is adopted both for the modeling
and for the classification problem: anyway the physics of the IR sensing device
is not neglected, but it is exploited in order to simplify the network structure.
By means of an exhaustive test of the IR output, we point out a nearly linear
dependence of the IR measurement vyg on 1/d?. For 5 cm < d < 25 cm, the
output values for the diverse colors differ for a constant multiplying factor and
this suggests us to associate a proportionality coefficient o (0 < & < 1) to each
color; the value 1 corresponds to what we call a "WHITE” target. Moreover,
the IR output features a monotonically decreasing behavior with increasing
values of |6], which is related to the limited width of the radiation lobe and
to the consequent loss of energy when the received signal comes back from a

“surface which is not orthogonal. These considerations allow us to model the
IR output by separating the contributions of d, # and color to the IR output
signal, provided that the analysis is restricted to the region 5 cm < d < 25 cm
and —45° < § < 45°. For distances and angles outside of these ranges, there
is more dependence of the two parameters on each other. The model function
has the following expression:

mrr(vVus,a) = a(color) - mg(d) - mg(6) (2)

where mgy(d) is a function which takes into account the dependence of the IR
output on the target distance and the detector sensitivity, while my(#) is a
function whose value lies in [0, 1] and expresses the dependence on the target
orientation. Because of the introduction of a, mg(d) and mg(6) need to be
estimated just for the WHITE target. As shown in fig. 1.a, for mapping each of
these functions we adopt a 2-layers feed-forward neural network with sigmoidal
activation functions in the hidden layer and a linear output layer [5], trained
on a great number of measurements performed on WHITE targets at different
values of distance and angle, within the considered ranges.

The integration of the data provided by the US and IR subsystem consists
of using the US measurements concerning d and # to make a prediction of
zw(d,0) = mg(d)-mg(0) in the case of a WHITE target: the ratio & = vig/zw
is then an estimate of a (from (2) ) and is fed to the classifier. The goodness
of this approximation depends on different factors: the accuracy of the model
(2), the internal noise of the IR sensor and the noise in the US measurements.

A complex and oversized structure of the network estimating mgq(d) and
mg(6) is not a viable solution, because the noise sources in the sensing devices
could not be eliminated, and, moreover, the risk of overfitting and loss of gen-
eralization would increase. In practice the network would be prone to training
the noise more than the real signal. :

A more practical solution is to make the classification process take into
account the aforementioned uncertainties in a probabilistic sense, as was also
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made in our previous work [4], where possible inconsistency of the IR and US
data were taken into account in an heuristic fashion. Therefore we have decided
to use smaller neural networks which have the major advantage of “smoothing”
the learned function, canceling out the effects of noise.

Neural processing implements two major functions, as shown in fig. 1.a: two
networks (A and B) are trained to predict a value of zyw, from which & can be
estimated; a third network (CLASSIFIER) is used to classify the values of &
(and therefore the detected target color) into a number of color classes.

Networks A and B are two Multi-Layer Perceptrons with one hidden layer [5]
trained with the available experimental data (samples of vy g for different values
of dys, fus and vig). Network CLASSIFIER is a single layer WRBF network
trained to classify the different colors. The classifier is a one-hot decoder with as
many outputs as classes and samples measured with different target colors are
used for its training. After training, the network output delivers a continuous
value in each component of the output vector, which can be interpreted as

“being proportional to the class probability and used for attributing the input
pattern to one of the classes. Fig. 1.a summarize the complete processing of
the sensorial data.

4. Numerical results

To evaluate the influence of color and location of the reflecting surface on
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Figure 1: a) Block diagram of the processing performed on the data. b)
NSRMSE vs. the number of neurons in the hidden layer for network A. c)
NSRMSE vs. of the number of neurons in the hidden layer for network B.
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the amplitude of the IR sensor output, extensive calibration tests have been
carried out by means of a load frame INSTRON Mod. 4464, for imparting
precisely controlled displacements to the target, and of a MITUTOYO rotator
for varying the sensor—target relative orientation. The targets are standard A4
thin cards in 4 different colors: WHITE, BROWN, GREEN and BLACK.

The collected data has been used for networks training and validation.
Networks A and B in Fig. 1.a approximate the functions mg(d) and my(6)
respectively. In particular, network A is trained with a set of measurements
performed for § = 0 and d varying in the range [5cm, 25cm], while network B
is trained with the ratios between the outputs measured (at a fixed distance)
for @ variable and the value obtained for = 0.

As an index for evaluating the networks performances, we adopt the Nor-
malized Square Root Mean Square Error (NSRMSE):

1

NSRMSE = — (3)

where M is the number of training points, while (z;,y;) are the sample points,
oy is the standard deviation of the output data y; and f is the function estimate
. obtained from the network. The training is performed in 10000 epochs. Fig. 1.b
and Fig. 1.c show the NSRMSE as a function of the number of neurons in the
hidden layer for networks A and B respectively; it is clear that three and
four neurons (for networks A and B, respectively) are sufficient to achieve a
reasonable error.

Moreover, we evaluate the values of a reported in Tab. 1.a for the different
colors from the mean ratio of the experimental data and the model for oo = 1.

We test the system performances with different numbers of neurons for net-
works A and B and with a WRBF network as classifier, because elliptic decision
boundaries are needed in our case. Tab.1 summarize the results obtained with
both training and validation sets composed of 14400 measurements.

Ngs | Ng | P.% | P.%
COLOR | « 3 2 1962 1.9
brown 0.90 5 5 [96.8 | 0.8
green 0.81 6 5 [96.9 | 0.5
black 0.15 7 5 | 973 | 0.6
7 6 | 974 | 06

a) b)

Table 1: a) Measured values of a for the different target colors. b) Performances
of different networks: N4 and Np are the number of neurons in the hidden layer
of netwoks A and B respectively, P, and P, are the probabilities of error and
of correct decision.

It is worthwhile to remember that, in order to save computational time by
reducing the number of neurons in networks A and B, a moderate decrease on
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the probabilities of correct decisions could also be accepted, provided that the
increment in the error probability is negligible; in fact a missed detection can
occur when the US and IR measurement are not perfectly consistent and the
problem can be overcome by simply performing a second pair of measurements.

5. Conclusions

We have proposed a neural-based strategy for fusing the information provided
by two different sensing modalities, UltraSonic range finder and InfraRed detec-
tors: the IR output signal amplitude is interpreted in a proportional manner,
in order to exploit the IR output dependency on the target surface reflectivity.
Neural networks have been used for both modeling and classification purposes,
but some knowledge on the sensor physics has allowed some simplifications.

“Acknowledgments

The composite sensor system has been designed and developed within the
TIDE/OMNI project TP 1097. The authors gratefully acknowledge Dr. Vin-
cenzo Genovese for his contribution to the hardware design.

References

[1] A.M. Flynn: ”Combining Sonar and Infrared Sensors for Mobile Robot
Navigation”, Int. Jour. Robotic Research, Vol. 7, pp. 5-14, N. 6, 1988.

[2] A.M. Sabatini, V. Genovese, E. Guglielmelli, A. Mantuano, G. Ratti, P.
Dario: ”A Low-Cost, Composite Sensor Array Combining Ultrasonic and
Infrared Proximity Sensors”, Proc. 1995 IEEE/RSJ Int. Conf. Intell. Rob.
Syst., Vol. 3, pp. 120-125, August 5-9, 1995, Pittsburgh, PA, USA.

[3] Y. Nagashima, S. Yuta: “Ultrasonic sensing for a mobile robot to recognize
an environment — Measuring the normal direction of walls,” Proc. 1992
IEEE/RSJ Int. Conf. Intell. Robots. Syst., Vol. 2, pp. 805-812, Raleigh,
NC, July 7-10, 1992.

[4] A.M. Sabatini, V. Colla: “A Composite Proximity Sensor for Target Lo-
cation and Color Estimation ,” Proc. 5-the Int. Symp. Measur. Cont. in
Robotics, pp. 124-129, 6-8 May, 1996, Brussels, Belgium.

[5] S. Haykin: “Neural Networks: A Comprehensive Foundation,” Mc¢ Millan
College Publishing Company, New York, 1994.

[6] L.M. Reyneri: “Weighted Radial Basis Functions for Improved Pattern
Recognition and Signal Processing,” Neural Processing Letters Vol. 2,
No. 3, pp. 2-6, May 1995.





