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Abstract. In this paper we demonstrate how the generalization ability
of neural controllers can be improved by imposing an additional stability
constraint for the closed-loop system. The generalization is improving
with respect to process noise and measurement noise. In order to achieve
this, conditions for global asymptotic stability from NL, theory are used
in order to constrain the dynamic backpropagation procedure.

1. Introduction

Thanks to the universal approximation ability, multilayer perceptrons are pow-
erful tools to parametrize general nonlinear models and controllers. In a recur-
rent neural network context, a classical method for training neural controllers,
based upon identified neural network models for the plant, is dynamic back-
propagation [3, 4]. Because of the finite time horizon that has to be chosen
for tracking specific reference inputs, it may lead to bad generalization of the
controller to future data points. This problem has been observed on a real-life
example of controlling a ball and beam system [9]. In this case even instabilities
were observed for the control scheme, while the error on the training set was
low for a step or sinusoidal reference input.

An approach to overcome these problems is to apply NL, theory [6, 7, 8],
which is a neural control framework with global asymptotic stability criteria.
The stability criteria can be used in order to constrain the dynamic backpropa-
gation algorithm, i.e. searching for optimal performance within a class of stabi-
lizing neural controllers. In this way the ball and beam system was successfully
controlled [9]. Often the neural controller is trained based upon a determinis-
tic nonlinear model and applied afterwards to a possibly noisy nonlinear plant.
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The aim of this paper is to show that by imposing the NL, stability constraint
to dynamic backpropagation, the generalization ability of the neural controller
improves with respect to process noise and measurement noise on the system.
Also for system identification and classification problems it is known that a
modification of the original mean squared error cost function (regularization in
this case) leads to improved generalization [1, 5] of the model. Here we observe
an improved generalization by means of stabilization in the context of control
problems.

This paper is organized as follows. In Section 2 we present the neural control
scheme. In Section 3 we derive the NL, representation for the closed-loop
system. In Section 4 the modified dynamic backpropagation with NL, stability
constraint is discussed. The improved generalization ability is illustrated on an
example in Section 5.

2. Neural control scheme

Consider a nonlinear plant P for which we assume the following true model

D Tr41 = Wan tanh(Vaxy + Vpug + Bap) + wg )
) Yk We tanh(Voxy) + vy

with state z; € R”, input ui, € R™, output y; € R, zero mean white Gaussian
process noise wy € R™ and measurement noise vy, € R'. The state and output
equation are parametrized by one-hidden layer multilayer perceptrons with
interconnection matrices W,, V, and bias vectors 8. of appropriate dimension.
The number of hidden units is equal to ny, and ns, respectively.

We assume that the following deterministic model M has been identified
for the plant and a neural controller C has to be designed based upon M in
order to control the plant P:

M: { Epy1 = Waptanh(Vady + Vpug + BaB)
) gy = We tanh(ch:k)
(2)
c: { zpe1 = Wertanh(Vezi + Veyr + Vrydi + BEF)
) u, = Wg tanh(Vsz)

where & € R” is the estimated state vector and di is the reference input of
the control scheme. The number of hidden units for C is equal to np, and ng,
respectively.

3. Closed-loop scheme in NL, form

The state equation for the closed loop system {M,C} is

Fpr1 Wap tanh(Vazy, + VeWq tanh(Vgzr) + BaB) (3)
zk+1 = WEF tanh(Vgz, + VeWe tanh(Voiy) + Vi dp + Ber).
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By introducing additional state variables & = tanh(Ve &) and 0 = tanh(Vgzi)
one obtains

Ery1 = Waptanh(Vazy + VeWenk + Bas)

21 = Wgrptanh(Vezg + VEWeéi + Vrdi + BEF) )
¢ep1 = tanh(VoWap tanh(Vadi + VBWank + BaB))

Ne1 = tanh(VaWgr tanh(Vezy + VeWepér + Ve dr + Ber))

with state vector pg = [£k; 2k; Ek; k)

The latter equation is in NL, form [6, 7]. Since we will focus on internal
stability in the sequel, we write down the equation for the autonomous NL,
system (g = 2):

pr+1 = 1 (Vila(Vapr)) (5)
with
Wan Va O 0 VeWeg
V _ WEF V - 0 VE VFWC 0
T VoWas 2EL oy, 0 0 VsWe
VeWer 0 Ve VeWe 0

and I';, Ty are diagonal matrices with diagonal elements depending on py but

belonging to [0, 1] for all values of pj, (which corresponds to the fact that tanh(.)
belongs to sector [0, 1]). The matrices V; and V; are of dimension n; X ny and
ng Xny respectively, with ny = n+n,+np, +np, and ng = 2np, +2n4p,. For NL,
systems, conditions are available for global asymptotic stability, input/output
stability with finite Lo-gain and robust stability [6, 7]. The criteria have been
expressed in terms of diagonal scaling, diagonal dominance and condition num-
ber factors. It has been shown how these stability criteria can be used in order
to control nonlinear behaviour with a unique or multiple equilibria, periodic
behavior and chaos [6].

4. Dynamic backpropagation with NL, stability
constraints

A classical method for training recurrent neural networks is Narendra’s dynamic
backpropagation procedure [3, 4]. In order to learn the neural controller to
track a specific reference input di, one formulates the optimization problem

N
min 960 = g 3 I =01 ©

where 6, denotes the neural controller parameter vector and N is the finite time
horizon for the training data. In order to impose global asymptotic stability of
the closed-loop scheme {M, C}, dynamic backpropagation can be modified with
NL, stability constraints [6, 7]. We use here the criteria which are expressed
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in terms of condition numbers:

”PtotVtotPt;tlllz <ec <1
k(Piot) < €2

min J(f,) such that { (7)

cyftot
with

0 V P, 0
‘/tot=|iv'l OzjlaPtotzlioz Pl].

The positive real constants c;,cy are user defined and «(.) denotes the con-
dition number of a matrix. The first constraint imposes local stability of the
origin while minimizing the upper bound ¢, enlarges the basin of attraction of
the origin. Strictly speaking global asymptotic stability is only guaranteed if
k(P1)k(P2)er < 1, but simulation results on several types of nonlinear systems
strongly suggest that ¢; < 1 together with a minimization of these condition
numbers can be sufficient in order to obtain global asymptotic stability, even
for chaotic systems [6].

Now many simulation results show that controllers, obtained as solution to
(7), also have an improved generalization with respect to (6), when process
noise and measurement noise are added to the model as for the true model (1).
This phenomenon is illustrated on an example in the next Section.

5. Simulation example

In this example we study the following model M

0.0541 —0.0088 —0.3261 —-0.2587 -0.5950 -—0.3103
Wap = 0.0053 —0.4749 0.1917 | ,Va = 0.4379 1.2163 —0.3023 |,
—0.4819 0.1042 —0.2935 —0.3008 —0.2314 0.4797

—1.0473 —-1.9171 0.6385 —0.9094 0.3908 —1.5349
1.5357 0.4699 1.3808 —2.3056 0.0203 0.2214

0.6250 0.4344 1.2744 1.3198 1.7887 —0.4060
We = Vo =

(8)
and Vg = I3 where n = 3,14, = 3,np, = 3,m = 3,1 = 3. Simulation results
suggest that it is globally asymptotically stable.

We consider the problem of tracking a sinusoidal reference input dp =
sin(0.5 k). We take a third order neural controller with n, = 3,np, = 3,np, =
3. A time horizon of N = 30 has been taken in order to compare classical
dynamic backpropagation (6) and modified dynamic backpropagation (7). The
optimization has been done by means of a quasi-Newton method and sequen-
tial quadratic programming respectively [2] (Matlab’s fminu and constr). As
starting points, random controller parameter vectors §. have been taken (zero
mean normal distribution with standard deviation 0.1) and P, P identity ma-
trices. For ¢; = 0.95 and ¢ = 100 two good local minima are compared by
simulating the closed-loop system of the neural controllers C with the plant P
(1) for different noise levels o. The process noise and measurement noise was
chosen with zero mean and equal variance ¢. In order to check the general-
ization ability of the two controllers the cost functions J(f.) were calculated
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for a larger time horizon N = 100 (including the first 30 data points from the
training and 70 points of test data). The values of J(6.) were averaged over 50
independent simulation results at each of the different noise levels for o values
ranging in the interval [0,0.2]. As a result from these experiments one clearly
sees that dynamic backpropagation with stability constraint has an improved
generalization ability when noise starts playing a significant role in degrading
the tracking performance (Fig.1).

6. Conclusions

We illustrated on a simulation example of training neural controllers, that
imposing NL, stability constraints to dynamic backpropagation improves the
generalization ability with respect to process noise and measurement noise.
The combination of dynamic backpropagation with NL, theory offers a more
reliable controller design procedure.
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Fig. 1: (Top) Comparison between dynamic backpropagation (full
line) and modified dynamic backpropagation with NL, internal sta-
bility constraint (dashed line). The generalization for tracking error
is shown with respect to the noise level o of equal process noise and
measurement noise, averaged over 50 simulations for each noise
level. (Bottom-right) result for modified dynamic backpropagation
at o = 0.06: 30 training data before the vertical line and 70 points
of test data; sinusoidal reference input (Full line) and output of the
plant (dashed line). (Bottom-left) o = 0.12.
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