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Abstract. The method of constraining unknown control functions to
take the structures of suitable nonlinear approximators enables one to
solve approximately (but at any desired degree of accuracy and with-
out the need of too many parameters to optimize) “difficult” functional
optimization problems. The method is tested on Witsenhausen’s coun-
terexample, using neural networks as nonlinear approximators. The sim-
ulation results show the effectiveness of the proposed method.

1. - Information-distributed optimal control problems
and an approximate method for solving them

There are many situations, in engineering and economic systems, where several
decision makers (DMs), sharing different information patterns, cooperate to
the accomplishment of a common goal. Typical examples may be encountered
in communication networks, in large-scale traffic systems, in geographically
distributed control systems, etc. As the DMs cooperate to the minimization of
a common cost function, a feam optimal control problem is faced.

Solving analytically such a problem under general assumptions is a prac-
tically impossible task. In [1], Ho and Chu, developing the pioneering work
by Radner [2], gave sufficient conditions for solving a team problem, that is,
when i) the team problem is LQG and ) the information structure is par-
tially nested, i.e., when any DM can reconstruct the information of the DMs
the actions of which influenced its own information. Unfortunately, most of
team organizations do not satisfy the aforesaid sufficient conditions. This leads
us to address an approximate technique consisting in constraining the control
functions to have a fixed structure (we chose feedforward neural networks).
We are then able to obtain suboptimal sclutions under very general conditions.
Such a technique has proved to be effective in non-LQG classical optimal con-
trol and in team problems not solvable analytically (see, for instance, [3, 4, 5]).
The proposed method aims at solving approximately the following functional
optimization problem:
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Problem 1. Given i) a set of N decision makers DMy, ..., DMy, each imple-
menting a decision strategy u; = (i), i = 1,...N, ii) a set of information
functions y; = gi(u1, ..., Us—1, Yit1, - - .un, &) satisfying certain causality con-
ditions [6] (¢ is a random vector with a known probability density function),
and iii) a cost function J(u1,...,un,§), find the optimal strategies 77,...,7x

that minimize the expected value of J. O

Problem 1, besides being a team problem, may be regarded as a classical cen-
tralized one if the DMs correspond to the control actions generated by a single
perfect-memory controller acting at stages 0,1,..., N —1, and if £ is composed
of the initial state and of the process and measurement random noises (the
state equation is implicitly included in the information functions and the cost
function). The method proposed to solve Problem 1 approximately consists in
the following two steps.

1. The DMs’ control strategies are given fixed structures of the form %; (y;, ws),
where w; is a vector of parameters to be optimized. As fixed structures, we
may use nonlinear approximators, like feedforward neural networks, radial basis
functions (RBFs), Jones’s linear combinations of trigonometric basis functions
with adaptable frequencies and phases, Breiman’s sums of hinge functions with
adaptable hinges, and others. These approximators benefit by powerful approx-
imation properties, that is, ¢) they are dense in the sets of continuous functions
to be approximated defined on compact domains , and ) under suitable as-
sumptions on the regularity of the functions to be approximated (denote one
of them by ¢(z) : R® — R™), the number of parameters needed to achieve a
given integrated square error grows only linearly with n. The latter property
may not hold true for linear approximators (i.e., linear combinations of fixed
basis functions), for which the number of coefficients of the linear combinations
may grow exponentially with n [7].

Substitution of the functions 4; and g¢; into the cost J yields a new cost

of the form J(w,£), where w 2 col(wy,...,wy). Then, instead of the origi-
nal functional optimization problem, we have to solve the following nonlinear
programming problem:

Problem 2. Find the optimal vector w® that minimizes E[J(w,€)]. O
If linear approximators are used instead of nonlinear ones, step 1 resembles the
Ritz method.

2. Problem 2 can be solved by some descent algorithm. We focus our atten-
tion on gradient algorithms mainly for their simplicity. This will enable us
to introduce, in a straightforward way, the concept of stochastic approzima-
tion. Actually, due to the generality of Problem 2, we are not able to express

the average cost E [f (w,f)] in explicit form. This leads us to compute the
¢

“realization” V, J [w(h),&(h)] and to use the following updating algorithm

w(h+1)=w(h) — a(h)Vy J [w(h),E(h)], h=0,1,...



ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 79-84

where the sequence {£(h),h = 0,1,...} is generated by randomly selecting &
according to its p.d.f. Note that the step-size a(h) must suitably decrease
to ensure (hopefully) convergence (see [8] for more details). In the numerical
examples, we shall take a(h) = ¢1/(ca + h).

2. Witsenhausen’s counterexample

Witsenhausen’s well-known counterexample [9] exhibits the essential difficulties
encountered when a partially nested information structure does not hold, even
if LQG assumptions are verified. Following [9], let us consider two decision
makers, DM; and DM, which make use of different information functions,
le.,

y=x, Yyp=z+u +v (1)

where z ~ N(0,02) and v ~ N(0,1) are two independent Gaussian random
variables. Then, we can state the following

Problem W. Find the optimal strategies 47 and ¥§ that minimize the cost
functional

w}%[J(%, Y2, @, v)] = E{kz[x — 11 () + (1) — 72(v2))*}

(]
Witsenhausen demonstrated that the best afline solution of this problem is not
guaranteed to be optimal. He did so by using the functions

71(31) = 0z sgn(y1), 72(y2) = 0, tanh(os y2) (2)

which, for k%202 = 1 and k — 0, give a lower cost than the one given by
the best solution in the class of affine functions. But an optimal solution
was not found. No progress in deriving an optimal solution was obtained by
discretizing Problem W [10]. This was explained in [11] by demonstrating that
the discretized Problem W expressed in decisional form is NP-complete. In
[12], an improvement over the solutions (2) was proposed by constraining v,
to take on the structure v1(y1) = € sgn(y:1) and by letting the structure of v,
be “free”. It can be shown [12] that the cost can be expressed as an explicit
function of ¢. Denote it by J(¢, k, ;). For k — 0 and k%¢2 = 1, a lower cost
was obtained in [12] than the one derived by Witsenhausen. In the following,
we shall consider the values of ¢ that minimize J (¢, k,05). The corresponding
DMs’ strategies will be called optimized Witsenhausen solutions.

We want to point out that all the analytical nonlinear solutions proposed in
the literature outperform the best affine solutions only in a limited portion of
the plane of k? and ¢2. In Fig.1 the portion of this plane is drawn in which the
cost relative to the optimized Witsenhausen solutions (Jg, opt) is lower than
that relative to the best affine ones (Jg,). Not surprisingly, such an area
encompasses (for not too large values of k) the curve 02k? = 1 (dashed line)
considered in Witsenhausen’s counterexample.
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Finally, let us address the following problem stated by Bansal and Basar
[12}:

Problem BB. Find the optimal strategies v} and +5 that minimize the cost
functional

ElJ(m229)]=E (k373 (1) + so1m(v1) = + [2 — 72(v2))"}

with information structure given by (1) and z ~ N(0,02) and v ~ N(0,02). o
The problem is proved to have optimal affine solutions given by

* .2
Ao?

7 o S Y2
A*g2 + o

3)

() =Xy, 7v5(ve) =

where A* is a oot of a certain 5th-order equation.

3. Numerical results

In section 2., we have introduced Problem BB in order to test our approx-
imate method on a problem whose optimal solutions are known. We have
introduced Problem W to understand the behavior of the method in find-
ing approximately the unknown solutions of problem W. Towards this end,
we shall evaluate the cost E[J(w?,w$,z,v)], related to the various approxi-
mate optimal strategies %1(y1,w$) and %2(yz,w$), by its empirical estimate

J? = ﬁzﬁl[wf,wg,x(j),v(j)]. z(j) and v(j) are generated randomly on
the basis of their probability densities, and M is a sufficiently large integer
(we shall take M = 10%). The costs for the optimal solutions of Problem BB
(J&p), for the optimal affine solutions of Problem W (J§,,), and for the opti-
mized Witsenhausen solutions (J§,,;) can be evaluated analytically.

a) Comparison between optimal solutions of Problem BB and approzimate op-
timal solutions that solve the related Problem 2. In Fig.3A, the strategies
1 (y1, w3) and J2(y2, w$) are compared with the strategies (3). In this example
and in the following ones, the strategies 4; and 93 were implemented by using
feedforward neural network with a single hidden layer with 30 sigmoidal units
and a linear output unit. We obtained the costs J3p = 8.913 and J? = 8.915.
The training phase is plotted in Fig. 2. As can be seen, the approximate
strategies practically coincide with the optimal ones in the statistically signifi-
cant ranges. This was verified for several combinations of parameters. Similar
results were obtained by using RBFs and Jones’s approximators.

b) Comparison between optimized Witsenhausen solutions, optimal affine solu-
tions, and approzimate optimal solutions that solve the related Problem 2. In
Fig.3B, the comparison is made for the case k? = 10, ¢2 = 10, for which the
best affine solution outperforms the optimized Witsenhausen one. The oppo-
site occurs for the case k2 = 0.1, 02 = 10 (see Fig.3C. In the former case, we
obtained the costs Jiy, = 0.909, Jiy ., = 36.4 and JJ = 0.922; in the latter,
Ty = 0.9090, J3,,, = 0.417 and J2 = 0.409. It is important to point out that
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vur approzimate method was able 1o yield function shupes sunilar to the best
known ones (whether they are linear or nonlinear), irrespectively of the values
of the problem parameters. More precisely, as is shown in Fig.3C, the approxi-
mate strategy 91 does not take exactly a step shape, but a linear component is
also present (a structure of this type was proposed in [12]). The same occurs
also for the shape of 45. It is worth noting that, for some particular values
of the parameters, the approximate optimal strategies yield better costs than
the ones so far derived in the literature. This deserves a further investigation
in order to understand if the optimal strategies derived in solving Problem 2
perform better than the best known ones in the whole plane k%, o2 (provided
that a sufficient number of neural units is used). As to the behaviors of the
various nonlinear approximators, we may report that (apart from the request
for more or fewer units) neural networks, RBFs, and Jones’s approximators
behaved in the same way.
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Fig. 3: A) Neural control functions (—) and optimal solutions (- - -) for a Prob-
lem BB with ky = 10,501 = —1,02 = 10, and o2, = 1. B,C ) Neural control
functions (——), best affine solutions (- - -} and optimized Witsenhausen solutions
(---) for the cases k* = 10,02 = 10 and k* = 0.1, 6% = 10 respectively.
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