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Abstract. In this paper, we show that training of the support vector
machine (SVM) can be interpreted as performing the level 1 inference
of MacKay's evidence framework. We further on show that levels 2 and
3 can also be applied to SVM. This allows automatic adjustment of the
regularization parameter and the kernel parameter. More importantly,
it opens up a wealth of Bayesian tools for use with SVM. Performance is
evaluated on both synthetic and real-world data sets.

1. Introduction

Recently, there has been a lot of interest in studying the support vector ma-
chine (SVM) [1, 4, 5]. SVM is based on the idea of structural risk minimization,
which shows that the generalization error is bounded by the sum of the training
set error and a term depending on the Vapnik-Chervonenkis dimension of the
learner. By minimizing this bound, high generalization performance can be
achieved. Moreover, unlike other machine learning methods, SVM's general-
ization error is not related to the problem's input dimensionality. This explains
why SVM can have good performance even in high-dimensional problems.

However, some parameters in the SVM still have to be tuned. Two impor-
tant ones are the regularization parameter and the kernel parameter. Some-
times, these are just hand-picked. A more disciplined way is to use a validation
set or by cross-validation, but that can also be very computationally expensive.

In this paper, we apply a well-known Bayesian method, MacKay's evidence
framework [2], to SVM, with focus on classi�cation problems. The evidence
framework has been applied successfully to feedforward neural networks. Com-
pared with the traditional approach, it provides a rigorous framework for the
automatic adjustment of the regularization parameters to their near-optimal
values, without the need to set data aside in a validation set. Moreover, it allows
objective comparison among solutions using di�erent architectures. Among
others, the evidence framework can also assign error bars to network predic-
tions and avoid making over-con�dent predictions in regions of sparse data.

The rest of this paper is organized as follows. Sections 2 and 3 brie
y
review SVM and the evidence framework. Section 4 discusses how they can
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be integrated and then be used to determine the regularization and kernel
parameters. Simulation results are presented in Section 5, and the last section
gives some concluding remarks.

2. Support Vector Machine for Classi�cation

Let the training set D be f(xi; yi)gNi=1, with input xi and output yi 2 f�1g.
The SVM �rst maps x to z = �(x) 2 F . When the data is linearly separable
in F , the SVM constructs a hyperplane wT z+ b for which separation between
the positive and negative examples is maximized. It can be shown that w =PN

i=1 �iyizi, where � = (�1; : : : ; �N ) can be found by solving the following
quadratic programming (QP) problem: maximize W (�) = �

T1 � 1

2
�
TQ�,

subject to � � 0 and �Ty = 0. Here, y = (y1; : : : ; yN )
T and Q has entries

yiyjz
T
i zj = yiyjK(xi;xj), where K(�; �) is called a kernel . Notice that Q is

positive semi-de�nite and so there is no local optima in the optimization.
When the training set is not separable in F , the SVM algorithm introduces

non-negative slack variables �i � 0. The resultant problem becomes

minimize
1

2
kwk2 + C

NX
i=1

�i; (1)

subject to yi(w
T zi + b) � 1 � �i. C is a regularization parameter controlling

the tradeo� between model complexity and training error. Again, (1) can be
transformed to a QP problem: maximize W (�) = �

T1 � 1

2
�
TQ� subject to

0 � � � C1 and �Ty = 0.

3. The Evidence Framework

A model H, with a k-dimensional parameter vector w, consists of its functional
form f , the distribution p(Djw;H) that the model makes about the data D,
and a prior parameter distribution p(wjH; �), which is usually of the form:
p(wjH; �) = exp(��EW (wjH))=ZW (�), where � is a regularization parameter.

3.1. Level 1 Inference

For a given value of �, the �rst level infers the posterior distribution of w by
the Bayes rule: p(wjD;�;H) = p(Djw;H)p(wj�;H)=p(Dj�;H). Substituting
in p(wjH; �) above, it can be shown that �nding the maximum a posteriori

(MAP) estimate wMP of w is the same as minimizing

M(w) � �EW (w) � log p(Djw;H): (2)

3.2. Level 2 Inference

The second level of inference determines the value of � by maximizing p(�jD;H).
When p(�jH) is 
at, the evidence p(Dj�;H) can be used to assign a preference
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to alternative values of �. By approximating the posterior distribution of w by
a single Gaussian at wMP , it can be shown that

log p(Dj�;H) = ��EMP
W +GMP � 1

2
log detA+

k

2
log�; (3)

where A = r2M;G(w) � log p(Djw;H), and EMP
W and GMP are the values

of EW and G evaluated at wMP .

3.3. Level 3 Inference

The third level of inference ranks di�erent models by examining their posterior
probabilities p(HjD). Assuming a 
at p(H) for all models, di�erent models
can then be rated by their evidence p(DjH). Again, assuming that the ev-
idence maximum can be well approximated by a Gaussian, then p(DjH) /
p(Dj�MP ;H)=p
, where 
 is so-called e�ective number of parameters .

4. Applying the Evidence Framework to SVM

Recently, Smola et al. [3] proposed a Bayesian interpretation of SVM based
on a function-space view. This, however, cannot be readily incorporated into
the evidence framework as its prior is based on the weights. Williams [6] did
show a prior based on the weight-space view, but only if the squared error loss
function were used.

4.1. Another Bayesian Interpretation of SVM

First, consider the case when the training set is not separable in F . In order to
determine w, we minimize (1), which, for a �xed C, is the same as minimizing

kwk2
2C

+

NX
i=1

�i: (4)

If we adopt the probability model that (1) the prior over w is the Gaussian

prior p(wjC) / exp(�kwk2

2C
), and (2) the probability1 of generating pattern i

is exp(��i), then the log data likelihood log p(Djw) is �PN

i=1 �i by assuming
that the patterns are i.i.d. Putting � = 1=C and comparing (4) with (2), we
see that minimizing (1) during SVM training can be interpreted as performing
the level 1 inference under this probability model.

When the training set is separable in F , let �max be the largest Lagrangian
multiplier in the set of support vectors. We can view the training process as
minimizing (1) with C = �max. With a larger C > �max, both w and �i will
remain unchanged. Hence, e�ectively, we can take C = �max in (4). Similarly,
back in the non-separable case, we may supply a C to (1) which turns out to

1Recall that �i � 0, hence the probability so de�ned is normalized (
R
1

0
exp(��i) d�i = 1).
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be larger than all the Lagrangian multipliers in the solution. In this case, the
e�ective C we are using will just be the largest Lagrangian multiplier.

4.2. Computing the Hessian

We next have to determine the hessian A = r2M = r2(�EW +
PN

i=1 �i). As
an approximation, we assume that �i exactly measures the di�erence between
yi and w

T zi + b (which in fact is only an upper bound), then

�i =

�
step(1� ai)(1� ai) if yi = 1
step(1 + ai)(1 + ai) if yi = �1;

where ai � wT zi + b and step(u) is the step function. However, step(u) is not
di�erentiable, and we replace it by the sigmoid function s(u) = 1=(1 + e��u).
Noting thatrai = zi andr2ai = 0, we obtainr2�i = r(jyi�aij)zizTi � riziz

T
i ,

where r(u) � us00(u) + 2s0(u). Thus, A = �I+B, where B =
PN

i=1 riziz
T
i .

One can show that the eigenvectors fvlgl of B can be written as vl =PN

i=1 �lizi. For zk = �(xk); k = 1; : : : ; N , we have �lz
T
k vl = zTkBvl, where �l is

an eigenvalue of B. This leads to �lK�l = K~K�l, where �l = (�l1; : : : ; �lN )
T ,

K is the N�N matrix with entries zTi zj = K(xi;xj), and ~K is another N�N
matrix with entries riz

T
i zj = riK(xi;xj). Assuming that K is invertible, we

have �l� = ~K�l. Solving, we obtain the eigenvalues f�̂lgl of A as �̂l = �+ �l.

4.3. Levels 2 and 3 Inference for SVM

Level 2 inference determines the value of � by maximizing p(Dj�;H) in (3).
Recall that p(Dj�;H) is computed by approximating the posterior distribution
of w by a single k-dimensional Gaussian at wMP . Here, k is usually very large
and can even be in�nite, depending on the chosen kernel function. In this
case, only a (possibly very small) subspace of w will be a�ected by the data
likelihood, and we argue that the Gaussian approximation is valid only in this
subspace. In e�ect, we replace k in (3) by the number of signi�cant eigenvalues
n in ~K. Moreover, detA in (3) can be readily computed given the eigenvalues
�̂ of A, and we get log p(Dj�;H) = ��EMP

W +GMP � 1

2
log
Qn

i=1 �̂i +
n
2
log�.

To obtain the model evidence p(DjH) in level 3 inference, we need to calcu-
late the e�ective number of parameters 
 [2]. This involves traceA�1, which,
again, can be computed readily from the eigenvalues of A. It can be shown
that 
 =

Pn

i=1 �i=(�+ �i).

5. Simulation

Simulation is performed on two data sets. The �rst one is a 2-dimensional toy
problem, with 500 training patterns and 10,000 test patterns. The second one
is the image segmentation data2 from the UCI machine learning repository.

2The original problem is to classify a pattern into one of the seven classes: brickface, sky,
foliage, cement, window, path and grass. Here, we only concentrate on the class brickface.
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Here, we only report results on the polynomial kernel, though satisfactory
performance has also been obtained on the Gaussian kernel.

5.1. Choosing the Regularization Parameter

Figures 1a and b plot p(Dj�;H) and the percentage of correct classi�cations
on the test set at di�erent values of C (= 1=�). In most cases, the evidence
for � follows the testing accuracy closely. The discrepancy can be attributed
partly to the Gaussian approximation used for the posterior distribution of w.
Another reason is related to the use of

P
i �i as a measure of the training error

in (1). As a result, p(Dj�;H) is more accurately related to 1=
P

i �i in the test
set. This is con�rmed in Figures 1c and d, which show an improved match
between the mean of �i on the test set and the evidence for � at di�erent C.

5.2. Choosing the Kernel Parameter

This section discusses results on using the model evidence p(DjH) to determine
the degree d in the polynomial kernel. For a �xed d, the regularization param-
eter C is estimated in an iterative manner as described in [2]. Figure 2 plots
p(DjH) and the percentage of correct classi�cations on the test set at di�erent
values of d. Again, the evidence follows the testing accuracy closely.

6. Conclusion

In this paper, we show that the evidence framework can be applied to the SVM.
This integration allows automatic adjustment of the regularization parameter
and the kernel parameter to their near-optimal values. Moreover, it opens up
a wealth of Bayesian tools for use with SVM, such as the calculation of error
bars and moderated outputs.
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Figure 1: Results on using di�erent values of C.
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Figure 2: Results on using di�erent values of d.
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