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Abstract

The basic SOM is indi�erent to the ordering of the input patterns.
Real data, however, is often sequential in nature thus context of a pattern
may signi�cantly in�uence its correct interpretation. One simple SOM
model that takes the context of a pattern into account is the Temporal
K ohonen Map (TKM),which was modi�ed into the Recurrent Self Or-
ganizing Map (RSOM). We sho w analytically and with experiments that
the RSOM is a signi�cant improvement over the TKM because the RSOM
model allows simple derivation of a consistent update rule.

1 Introduction

The Self Organizing Map (SOM) [4] is probably the most popular unsupervised
neural netw orkmodel. The basic SOM is indi�erent to the ordering of the
input patterns. Real data, how ev er, is often sequential in nature thus temporal
context of a pattern may signi�cantly in�uence its correct interpretation.

One simple SOM modelthat tak es the context of a pattern into account is
the Temporal Kohonen Map (TKM) [1]. In the TKM the outputs of the units
are replaced with leaky in tegrators, which e�ectively low pass �lter the unit
activities over the sequence of inputs. The TKM model was modi�ed into the
Recurrent Self Organizing Map (RSOM) [7, 6] for better resolution, but it later
turned out that the real improvement came in the form of a consistent update
rule for the netw ork parameters.

In this paper we analyze the properties of the TKM and the RSOM models.
This analysis may also serve as anexample of the risks of modifying a model
without considering all aspects of the related algorithm and subsequently testing
the modi�cation with too few or too simple experiments. In the TKM the
problem of the modi�cation lays in the di�culty of updating the learning rule
to accommodate for the modi�ed activit y rule. We show that the RSOM is
a signi�cant improvement over the TKM since it allows simple derivation of a
consistent update rule.
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2 TKM and RSOM

In the TKMmodel leaky integrators, that gradually lose their activity, are added
into the outputs of the otherwise normal competitive units. These integrators
and consequently the decay of activation is modeled with the di�erence equation

Ui(n; d) = dUi(n� 1; d)� 1=2kx(n)� wi(n)k
2 ; (1)

where 0 � d < 1 is a time constant, Ui(n; d) is the activation of the unit i
at step n while wi(n) is the weight vector of the unit i and x(n) is the input
pattern. The unit with the maximum activity is the bmu in analogy with the
normal SOM.

The update rule for the TKM is not speci�cally addressed in [1]. In the
experiments, however, w eights were updated tow ard the last sample of the input
sequence using the normal stochastic SOM update rule

wi(n+ 1) = wi(n) + (n)hi;j(n)(x(n) � w(n)) ;
where (n) is the learning rate and hi;j(n) is the value of the neighborhood
function for the unit i at step n when the bmu is j. This corresponds with the
situation where the leaking coe�cient d is 0 for the update.

The leaked quantity in the R ecurrent Self-Organizing Map (RSOM) is the dif-
ference vector instead of its squared norm. These leaky integrators are modeled
with

yi(n; �) = (1� �)yi(n� 1; �) + �(x(n) � wi(n)) ; (2)
where yi(n; �) is the leaked di�erence vector for unit i at step n. The leaking
coe�cient � is analogous to the value of 1 � d in the TKM but in the RSOM
formulation the sum of the factors is one to ensure stability when � is positive
but less than one.

After moving the leaky integrators into the di�erence vector computation we
can treat the remainder of the map muc h lik e the normal SOM when the unit
with minimum ky(n; �)k is treated as the bmu. T o derive an update rule for the
RSOM w e�rst formulate an error function E(n) for the current sample x(n)
E(n) = 1

2

P
i2V hi;j(n)kyi(n; �)k

2, where V is the map. The gradient direction
of E(n) with respect to wi(n) is simply yi(n; �) and thus the stochastic weight
update rule for wi to minimize error E(n) is

wi(n+ 1) = wi(n) + (n)hi;j(n)yi(n; �) :
This deriv ationignores the discontinuities of the error function E(n) due to
discontinuities of the neighborhood function at the boundaries of the V oronoi
cells. The key properties of the learning rules of the TKM and the RSOM
models are summarized in Table 1.

Model Bmu selection criterion Weight update target

TKM maxU(�; d) maxU(�; 0)

RSOM min ky(�; �)k2 min ky(�; �)k2

T able 1: The properties of the TKM and the RSOM. The second column is bmu

selection criterion and the third column is the update rule target.
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3 Comparison of TKM and RSOM

In this section we will discuss the learning properties of the TKM and the RSOM
models. First in section3.1 w e deriv e theoptimal or the activit y maximizing
w eigh ts for a set of sequences and a single unit for both TKM and RSOM. The
analysis directly extends to multiple units in the zero neighborhood case

hi;j(n) =

�
1 i = j
0 i 6= j:

when the boundaries of the Voronoi cells are ignored. In 3.2 we look into the
update rule of the TKM to see what the map actually learns and compare the
results with the RSOM results.

3.1 Optimal weights

Brief mathematical analysis is su�cient to show how maximizing activit y in
the TKM should lead to similar weights as minimizing the norm of the leaked
di�erence vector in the RSOM when the maps share the same topology and
data. Let us �rst consider a single TKM unit and a set S = fX1; X2; :::; XNg
of sequences. The samples of the sequence Xj 2 S are xj(1); xj(2); :::; xj(nj),
where nj is the length of the sequence Xj . In the TKM the goal is to distinguish
di�erent sequences by maximizing the activit yof the corresponding bmu. F or
the set S of sequences and weights wT the activity U(S;wT ) over S is the sum

U(S;wT ) = �1=2
X
Xj2S

njX
k=1

d(nj�k)kxj(k)� wT k
2 : (3)

Since the activity U(S;wT ) is a parabola, it is everywhere continuous and dif-
feren tiable with respect to wT . Consequently its maximum lies either at an
extreme or at the single zero of @U(S;wT )=@wT . F rom@U(S;wT )=@wT = 0 w e
obtain

wT =
X
Xj2S

njX
k=1

d(nj�k)xj(k)=
X
Xj2S

njX
k=1

d(nj�k) : (4)

The weights wT maximize the activity U(S;wT ) of the unit for the set S. When
all sequences have the same length n, the term

Pnj
k=1 d

(nj�k) is constant and

thus we can simplify the the equation to wT = 1=
S

P
Xj2S

wj
T where 
S is

the cardinality of S and wj
T are the optimal for the sequence Xj 2 S de�ned

with wj
T =

Pn

k=1 d
(n�k)xj(k)=

Pn

k=1 d
(n�k) . These weigh ts are the mean of the

per sequence optimal weigh ts, and they also are a good approximation when all
sequences are su�ciently long for the chosen d.

F or the RSOM unit the leaked di�erence vector y(X;wR), where
X=x(1); :::; x(n) is the input sequence and wR are the RSOM weights, is

y(X;wR) = �

nX
k=1

(1� �)(n�k)(x(k) � wR):

Since the goal is to minimizethe norm of the leak ed di�erence vector, for the
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set S w e can write
E(S;wR) = 1=2

X
Xj2S

ky(Xj ; wR)k
2

for the error function E(S;wR), which is minimized at the optimum weights.
E(S;wR) de�nes a parabola just like U(S;wT ) for the TKM and thus the optimal
w eigh ts are eitherat an extreme or at the single zero of the derivative of the
error function with respect to the weights wR. F rom@E(S;wR)=@wR = 0 w e
obtain

wR=
X
Xj2S

 
njX
k=1

(1� �)(nj�k)
njX
k=1

(1� �)(nj�k)xj(k)

!
=
X
Xj2S

 
njX
k=1

(1� �)(nj�k)

!2

:

(5)
The weigh ts in Eq. 5 are quite close to the weights speci�ed in Eq. 4 The small
di�erence comes from the location of the leaky integrators.

Much like with the TKM we can simplify Eq. 5 if we assume that all sequences
ha vethe same length n. We get wR = 1=
S

P
Xj2S

wj
R , where wj

R are the
optimal weigh ts for the sequenceXj 2 S de�ned with

wj
R =

Pn
k=1(1� �)(n�k)xj(k)=

Pn
k=1(1� �)(n�k) . These weights are identical

with the corresponding TKM weigh ts whend = 1 � �. F rom theanalysis we
observe that the optimal weigh ts for both models are linear combinations of the
samples in the sequences.

3.2 Learning algorithms

Since the update rule of the RSOM is gradient descent to minimize the sum
of the squared norms of the leaked di�erence vectors regularized by the neigh-
borhood, the map explicitly seeks to learn the weights de�ned in the previous
section. With the TKM this is not the situation: We sho w that generally the
steady state weigh ts of the TKM do not maximize the activity and use simula-
tions to show how this a�ects the behavior of the TKM. To simplify the analysis
w e only considered the zero neighborhood case.

By de�nition, in a steady state further training causes no changes in weights.
In practice this means that the derivativ e of the objective function is zero with
respect to the w eights given a static set of input patterns. Though in the
stochastic training scheme reaching a steady state is not possible in �nite time,
criteria for a steady state can be de�ned and their impact considered when we
study the equivalen t batc h approach. F or the batch approach we split the TKM
algorithm in two. In the �rst stage the data is Voronoi partitioned among the
units with the netw ork activity function. In the second stage the new weigh ts
giv en the partitioning are computed. While proving convergence for any SOM
model is very di�cult, possibly impossible [3, 2], if the TKM con vergesthe
w eights have to satisfy the criteria we de�ne here.

We ha ve a set S = fX1; :::; XNg of discrete sequences and a map V . Last
sample of each sequence Xj 2 S is xj(nj) where nj is the length of the sequence
Xj 2 S. In a steady state the TKM w eigh tsha veto be in the cen troids of
the last samples of the sequences in the Voronoi cells of the units because the
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t

TKM update
direction

maximum
activity

bmu(t)

Gradient direction
to maximize activityt−5

t−4

Figure 1: A piece of a TKM during train-
ing. The units, and their Voronoi cells,
are marked with asterisks (�) and the in-
put sequence with little circles (�). The
plus (+) is drawn at the activit y maxi-
mizing weigh ts. The arrows show the op-
timal and the actual TKM update direc-
tions.

Figure 2: Approximation of mean bias
when d = 0:15 betw een the activity max-
imizing update directions and the TKM
update directions tow ard the last sample
of a random sequence in the 7� 7 grid in
2D input manifold.

w eigh ts are updated tow ard the last samples of the sequences. This condition
follows from the update rule tow ardthe last samples of the sequences which
corresponds with the situation d = 0. When d = 0 TKM activity for unit i in
Eq. 3 reduces to Ui(wi; Si) = �1=2

P
Xj2Si

(wi�xj(nj))
2 and the corresponding

steady state weights at @Ui(wi; Si)=@wi = 0 are

wi = 1=
Si

X
Xj2Si

xj(nj) ;8i 2 V ; (6)

where Si � S is the set of sequences in the Voronoi cell of i and 
Si is the cardi-
nality of Si. These weigh ts are necessary for a steady state.The optimal TKM
w eigh ts withrespect to the activit yrule were de�ned in the previous section.
The weigh tswTi =

P
Xj2Si

Pnj
k=1 d

(nj�k)xj(k)=
P

Xj2Si

Pnj
k=1 d

(nj�k) ;8i 2 V
maximize activity with our simplifying assumptions.

The problem with the TKM is the discrepancy betw een the optimal weigh ts
and the necessary steady state weights. Fig. 1, which has a portion of a TKM
during training, shows this graphically. The arrow �Gradient direction to maxi-
mize activity� sho ws the optimal direction to maximize activity while the arrow
�TKM update direction� shows the actual update direction tow ard the last sam-
ple of the sequence.

We ran several simulations to show the impact of the discrepancy betw een the
bmu selection and the weigh t update in the TKM. The �rst simulation involv es
a 1D map in a discrete 1D input manifold with seven input patterns. We
initialized a 25 unit map with optimal weights (see axis 1 in Fig. 3) to maximize
the total activity when the 1D inputs were 1:::7 and the leaking coe�cient d w as
0:1429. The selection of d leads to a uniform optimal distribution of weights in
the input manifold. The nearly optimally initialized map w as furthertrained
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Figure 3: A map initialized with near op-
timal weigh ts and trained with the TKM
approach. Notice how most of the units
are dra wn into the edges.
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Figure 4: A map initialized with near
optimal w eights and trained with the
RSOM approach.

by randomly picking one of the inputs, thus creating long random sequences,
and updating the weigh ts using the stochastic training scheme. The samples of
the random sequences were corrupted with additive Gaussian (� N(0; 0:125))
noise.

Fig. 3 shows theprogress of a sample run for the TKM. The TKM quic kly
�forgets� the initial weights because they do not satisfy the steady state criterion
we derived earlier. Notice how the units are drawn tow ard the extremes of the
input space leaving only a couple of units to co ver bulkof the space. Similar
1D experiment with the RSOM in Fig. 4 yields a practically unchanged result.

We can intuitiv ely explain the reason for the units being drawn tow ard the
edges in the TKM with Figs. 1 and 2. F or sequences thatend near the edges
of the input manifold the activity maximizing TKM weights and consequently
the bmus are systematically closer to the center of the manifold than the last
samples of the sequences which the units are updated tow ard.We can see this
bias in Fig. 1 in the di�erence betw een the activity maximizing update direction
and the actual update direction. The bias causes units to be attracted tow ard
the edge and especially corner samples. Once a unit is close enough it will no
longer be the bmu for any non trivial sequence of moving value.

Fig. 2 shows an approximation of mean bias betw een the activity maximizing
update directions and the TKM update directions for a 7�7 grid in a 2D input
manifold. We considered random sequences composed of the 49 input patterns in
the manifold and computed the approximation for d = 0:15. The approximation
was created using all sequences of length sev en. The bias is zero only at the
center of the manifold and becomes larger the closer the input is tothe edge.
The lengths and the directions of the arrows show the relative magnitude and
direction of the bias for the sequences ending at that particular input. Formally

uj �
X

Xk2Sj

xj � wXk

where uj is the arrow drawn at input xj , Sj is the set of sequences which end at
xj , Xk is a sequence in Sj and wXk

are the activity maximizing TKM weigh ts
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Figure 5: An estimate of the TKM weigh t
distribution for a 10 � 10 map without
neigh borhood in the7� 7 grid when d =
0:15. Ligh ter shade means higher density.
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Figure 6: An estimate of the TKM weight
distribution for a 10 � 10 map with box
neigh borhood of radius one in the7 � 7
grid when d = 0:15.

for Xk. The arrows form what resembles a gradient �eld of smooth bump. The
behavior of the TKM in the 2D simulations supports the intuitiv e result in the
�gure.

In the second set of simulations we trained hundred TKM and RSOM maps
to estimate the the weigh t distributions withGaussian kernels. The manifold
w eused to compute Fig. 2 w asused in this experiment also and the input
sequences w eregenerated by randomly picking one of the 49 input patterns
much like in the 1D case. The results are summarized in Figs. 6�8. We ran tw o
simulations for both models. One, where the neighborhood was gradually turned
o� with quantization in the end and the other where neighborhood was retained
to the end. The maps w ere trained withLuttrell's incremental approach [5].
The 10 � 10 maps w eregiv en su�cient time to organize from random initial
con�gurations and w eused d = 0:15 and � = 0:85. Lik ein the 1D case the
input samples were corrupted with Gaussian distributed noise � N(0; 0:125).

The results show that regardless of initial con�guration and input data which
w as independently generated for each map both TKM and RSOM behave con-
sisten tly. In the case of the TKM without neighborhood the units were always
concentrated near the edges and the corners of the input space in accordance
with the the intuitiv e result inFig. 2. Lik ewise for the RSOM the units form
an approximately uniform lattice into the input space. Using box neighborhood
with radius one did not ha vemajor impact on the results for either TKM or
RSOM.

Now recall the optimal weights w ederived for TKM and RSOM in Eqs. 4
and 5. In these 2D simulations the optimal weights for both models were
approximately uniformly distributed in the input manifold. The TKM, however,
concentrated most of its units in the edges and the corners of the manifold
leaving only a few units to cover its bulk. As a consequence in these simulations
the TKM model wasted a considerable part of it expressive pow er.The RSOM
on the con trary systematically learned weights that nearly optimally spanned
the input manifold.

 D-Facto public., ISBN 2-930307-00-5, pp. 273-280B
orks

0,
ES Netw

r 0
A l 

0ug
ra

2
NN Neu
e l 

'2 l 
s i

000 icia
 pr

 Artif
( A

p on 
B 8 

ro m 
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 -  S
u  

 E an
m ,

urope
)



1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

Figure 7: An estimate of the RSOM
w eigh tdistribution for a 10 � 10 map
without neighborhood in the 7 � 7 grid
when � = 0:85.
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Figure 8: An estimate of the RSOM
w eigh t distribution for a10�10 map with
box neighborhood of radius one in the
7� 7 grid when � = 0:85.
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