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Abstract. A prediction scheme for spatio-temporal time series is pre-

sented that is based on reconstructed local states. As a numerical exam-

ple the ev olution of a Kuramoto-Sivashinsky equation is forecasted using

previously sampled data.

1. Introduction

The starting point for most analysis methods used in Nonlinear Time Series

A nalysisare measurements of a single observable of the system of interest [1].

Many interesting dynamical systems, however, are spatially extended and thus

any description using only a few local or global observables may be incomplete.

T oovercome these limitations w epresent an approach for local state space

reconstructions that turned out to be very useful for analysis of (large)data

sets from spatially extended systems.

Let fsng be the temporal sequence of spatial patterns (snapshots) of the

spatio-temporal ev olution with n = 1; :::; N . Each pattern s
n consists of M

elements and may be represented by a M -dimensional vector with elements

s
n

m
(m = 1; :::;M). Most of the techniques applied so far to spatio-temporal

time series (STTS) are based on linear decompositions into spatial modes that

constitute (orthogonal) bases in a high dimensional vector space [2, 3]. How-

ever, not always can such a decomposition yield a low-dimensional description

of the data,ev en in cases, where the STTS is governed by a low dimensional

attractor [4]. Another approach for analysing and modelling STTS consists

in the application of system iden ti�cationtools and was successfully applied

in cases where the underlying spatio-temporal system can be described by a

partial di�erential equation (PDE) [5].

An alternative to decomposition in to global linear modes or iden tifying

global nonlinear models is the construction of local states and models [6]. This

approach may be applied in all cases where the dynamics of the spatio-temporal

system of interest is go verned by spatially local (inter-) actions and where we

may assume that the (local) state of the system in a small region of space

�
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can be represented by a vector x. Such a reconstruction of a local state space

can be done in di�erent w ays and the basic idea w assuggested for the �rst

time by K. Kaneko in Ref. [7]. Later Rubin [8] used a similar approach for

characterizing dynamic and static pattern und recently Orstavik and Stark [8]

used spatio-temporal embedding techniques for cross-prediction of coupled map

lattices. In the follo wingw eshall assume that local states exist in a unique

and deterministic sense that allows in principle exact predictions (without sto-

chastic components). This conjecture is motivated by the case of coupled map

lattices where it can be easily veri�ed [6]. Numerical simulations with coupled

oscillators and PDEs show, how ev er, that it seems to be correct also for other

classes of systems. We want to stress that the latter is a necessary condition

for the reconstruction techniques to be useful in time series analysis of real

w orld data, because as soon as the local states are succesfully (re)constructed

they can be used for subsequent analysis or, as in the example given below, for

predicting the underlying dynamics.

In the follo wing w ewill discuss only the case of one dimensional spatial

pattern. Generalizations for higher dimensional cases are straight forward.

2. Reconstruction of local states

The entire STTS may be represented by a N �M -matrix S as shown in Fig. 1.

The state of the system at position m and time n is reconstructed in analogy

to the delay embedding of scalar time series [1]. Here we use the center element

s
n

m
, some of its neighbors and the corresponding values in the past to construct

the state ve ctor

x
n

m
= (sn

m�IK
; :::; s

n

m
; :::; s

n

m+IK ; :::; s
n�JL

m�IK
; :::; s

n�JL

m
; :::; s

n�JL

m+IK
) (1)

where I is the number of spatial neighbors, J is the number of temporal neigh-

bors(in the past), K is the spatial shift which has a similar meaning as the

time delay L (time lag) known from the delay embedding of scalar time series.

This construction is visualized in Fig. 1 for I = 1, J = 3, K = 2 and L = 2.

The dimension d of the state vector xn
m
2 R

d equals d = (J + 1)(1 + 2I).

3. Boundary conditions

Spatial boundaries of the dynamical process generating the STTS can be taken

into account by constructing the corresponding states separately in a way anal-

ogous to that described above. In principle all states xn
m
con taining boundary

values of the STTS have to be devided into di�erent classes where each class

is characterized by the distance of the center of the region from the boundary.

For predicting or modelling only states of the relevan tclass have then to be

used. This decomposition into classes can be implemented in di�erent ways [6].

In order to take into account the inuence of the boundary we shall use in the
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follo wing example apenalty function

w(x) = a(xc � x)b (2)

which serves as an additional coordinate for the selection of appropriate neigh-

bors in state space. Depending on the center point xc of the spatial domain and

the free parameters a and b preferentially those neighboring states are selected

which have a similar location with respect to the boundaries.

Sn-2
mSn-2

m-2

Sn
mSn

m-2 Sn
m+2

Sn-2
m+2

Sn-4
m-2 Sn-4

m Sn-4
m+2
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yn+τ
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Figure 1: Local reconstruction of states from regions of the spatio-temporal

time series S = fsngn=1;:::;N = fsn
m
gn=1;:::;N
m=1;:::;M

and prediction of the future

value of the center element sn+�
m

using forecasts of overlapping regions ...,yn+�
m�2

,

y
n+�

m�1
, yn+�

m
, yn+�

m+1
, yn+�

m+2
, ... that give the future evolution of the center region

and of neighboring regions.
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4. Nonlinear prediction

As an application of the local state reconstruction w econsider here the pre-

diction of STTS that can be implemented in di�erent w ays. Either only the

future value of the central element sn+�
m

is predicted [6] or a complete region

y
n+�
m

= (sn+�
m�I

; :::; s
n+�

m�1
; s

n+�
m

; s
n+�

m+1
; :::; s

n+�

m+I
) \in front" of the reconstruction

region is forecasted (see Fig. 1) where � gives the prediction time interval. F or

this purpose a training set of states A = fxn
m
g is deriv ed fromNtrain samples

s
n of the STTS. For these states the preimage-image relation x

n

m
7! y

n+�
m

, is

kno wn and is assumed to represent a nonlinear map F . T o approximate this

map the reference state xn
m

is reconstructed and its nearest neighbor xi
j
is se-

lected from the training set A. Using the indices (i; j) of the nearest neighbor

the underlying map F is locally approximated by the future values yi+�
j

of

the region \in front " of the state xi
j
. In this way we obtain 1 + 2I estimates

for a single future element sn+�
m

of the STTS which are then averaged using

an overlap-addapproach as illustrated in Fig. 1. (For locations close to the

boundary the number of estimates decreases to 1.) Alternatively, locally linear

or nonlinear maps may also be used to approximate the dynamics F . F urther-

more, predictions over longer periods of time (� > 1) can be computed as a

single large step or iteratively b y concatenating steps with� = 1.

5. Numerical example

As an example w eshall use in the following a STTS that is generated using

the Kuramoto-Sivashinsky (KS) equation [9]:

ut = �2uux � uxx � uxxxx (3)

in the interval [0; L] with u = ux = 0 at the boundaries x = 0 and x = L = 200.

The spatio-temporal dynamics of this system is go vernedby a hyperc haotic

attractor with Ly apunov dimension DL � 43. F or predicting the dynamics

of this PDE states close to boundaries ha vebeen selected using the penalty

function (2) with a = 3 and b = 7 and the prediction is performed iteratively

using the overlap-add approach based on predicted regions yn+�
m

(see Fig. 1).

Figure 2a shows the spatio-temporal ev olution of the KS-equation in the

time interval that is usedas a training set for the prediction of the test data

giv en inFig.2b. Figure 2c shows the results of a iterative prediction (� = 1)

based on a reconstruction of local states with I = 2, K = 4, J = 2 and L = 1.

As can be seen in Figs. 2b and 2c the essential features of the time evolution

are correctly predicted including the splitting and merging of structures.

Similar to the case of delay embedding of scalar time series [1] the choice of

proper embedding parameters is crucial for succesful applications. F or our sim-

ilations we proceeded in tw o steps.First the values for the spatial shift K and

the temporal delay L are estimated using the (averaged) mutual information H

[1] of spatial or temporal neighbors in the STTS as a function ofK or L, respec-

tively, in order to minimize the redundancy of the components of the local state
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vectors. F or the Kuramoto-Sivashinsky data the H-K-curv e possesses a local

minimum at K = 4 whereas the H-L-curv e has no pronounced minimum but

deca ys su�ciently for L = 1 indicating a low redundancy of temporal neighbors

for this v alue of the lag.These values for K and L are used then to determine

the necessary number of spatial I and temporal J neigbors (i.e. the dimension)

of the reconstruction. This was done in the present study by increasing these

values until the average prediction error decreased signi�cantly.

6. Conclusion

The numerical examples show that the local reconstruction of states is a pow-

erful method for predicting spatio-temporal time series. It may also serve as

a starting point for deriving local mathematical models in terms of polynomi-

als, radial basis functions or neural networks. Based on these reconstructions

subsequent bifurcation analysis or noise reduction [10] is possible. The scheme

discussed in this paper may be generalized in di�erent directions. The di-

mension of the reconstructed states can be reduced if the STTS stems from

a dynamical system that possesses additional spatial symmetries that can be

exploited when constructing the state vectors. If the process generating the

(b)

(c)

(a)

Figure 2: Spatio-temporal time series generated by the Kuramoto-Sivashinsky

equation (3). V aluesof the variable u(x; t) are plotted gra y scaled vs. space

x and time t. (a) T raining set. (b) Original time series to be predicted. (c)

Predicted time series.
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STTS is not spatially homogeneous one may add to the dimension d of the

reconstruction space the number dS of spatial dimensions of the problem (i.e.

dS = 1; 2 or 3) and work then in the extended d+ dS dimensional space. The

reconstruction and prediction methods work ed also well for data that were not

sampled simultaneously but (slowly) scanned spatially as it is the case in many

experimental measurements of extended systems. F urthermore, one may take

into account that an y physical information spreads with some maximum speed

and a triangle (\ligh tcone") may be more e�cient for reconstructing local

states instead of using a rectangular region of the matrix S (comp. Fig.1).

The authors acknowledge support by the Bundesministerium f�ur Bildung,

Wissenschaft, F orschung und T echnologie (gran t13 N 7038/9) and thank L.

Junge for providing the Kuramoto-Sivashinsky data and W. Lauterborn for

stimulating discussions and support.
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