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Abstract. This paper describes a new nonlinear projection method.
The aim is to design a user-friendly method, tentativ ely as easy to use as
the linear PCA (Principal Component Analysis). The method is based
on CCA (Curvilinear Component Analysis). This paper presen ts tw o
improvements with respect to the original CCA: a better beha vior in
the projection of highly nonlinear databases (like spirals) and a complete
automation in the choice of the parameters value.

1 Introduction

Often, one has to face the problem of dealing with huge numerical databases.
These databases consist in numerous samples (or vectors) xni de�ned in a n-
dimensional space. One way to make huge databases more manageable is to
project the databases in a low-dimensional space (say p-dimensional, p < n).
A well known method to project such a database is the Principal Component
Analysis (PCA).

PCA detects the linear dependencies betw een the coordinates (or features)
of vectors xni in the database Xn � R

n . The main drawback of PCA holds in
the fact that only linear dependencies are found. Nonlinear projection methods
exist but their performances strongly depend on complex adjustment of some
parameters. In comparison, the only parameter required by PCA is the loss of
variance accepted when the database is projected. With this single parameter,
PCA automatically determines the dimension p of the space where to project
and gives the best LMS projection of the database. It w ould be nice to have
such a user-friendly projection method, but with nonlinear capabilities. T o
reac h this goal, the CCA algorithm [1, 2, 3], described below, is a promising
approach.
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2 The original CCA

The basic idea behind CCA lies far from the PCA. In a few words, CCA tries to
reproduce the database `topology' from the initial space Rn to the projection
space Rp . In CCA spirit, the word `topology' means `the distances betw een all
pairs of vectors in the database'. Actually, CCA simply tries to �nd vectors xpi
in the projection space Rp such that they reproduce the distances measured in
the initial space Rn .

F ormally, CCA works by minimizing an objective (or error) function, which
is simply a kind of `topology di�erence' between vectors xni and xpi :

ECCA =
1

2

NX
i=1

NX
j=0

(dni;j � dpi;j)
2F (dpi;j); (1)

where N is the number of samples in the database Xn. The function di;j
measures the Euclidian distance betw een vectors xi and xj , either in R

n (dni;j)
or in Rp (dpi;j); F is a decreasing function of dpi;j .

Which role does the function F play? Actually, when the dependencies
in the database are not linear, a perfect reproduction of all distances is not
possible. In this case, F acts as a weighting function giving more importance
to the reproduction of small distances. In other words, CCA tries abo veall
to preserve the `local topology' of the database, reproducing `global topology'
only when it is possible.

A t �rst glance, CCA looks like Sammon's [4] mapping or nonlinear MDS [5].
How ev er, some di�erences in the objective function makes CCA more pow erful
in real cases. More details and a comparison betw een the three methods can
be found in [1].

3 How to implement CCA?

CCA is implemented b y a modi�ed stochastic gradient descent applied to the
objective function ECCA:

8i 6= j; �xpi = �(t)
dni;j � dpi;j

dpi;j
u

�
�(t)max

i;j
(dpi;j)� dpi;j

�
(xpj � xpi ); (2)

where �(t) (learning factor) and �(t) (neighborhood factor) are time decreasing
parameters, with values betw een 0 and 1. Also note that u(:) is the step
function, standing as a special instance of F , parameterized by �(t) (for the
reasons of this choice, see [1]).

A tthis point, a practical problem arises: eac h iteration of the gradient
descent has a computational cost which is proportional to N2! Therefore, the
convergence for large databases is time-consuming.

This problem is solved by using vector quantization (VQ) before applying
CCA, in order to obtain a smaller set of vectors, called `centroids'. Incidentally ,
V Q will also smooth the hyper-surface if it is noisy.
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A t thispoint, applying criterion (1)only to cen troids leads to a mapping
betw een the positions of the centroids in the tw o spaces, but not really a pro-
jection of the whole database Xn. Therefore, an additional procedure has to
be designed to perform an interpolation between centroids. This interpolation
uses the same adaptation rule (eq. 2) as for the main algorithm, but considering
now that only the vector to project will be adapted, while the position of all
other centroids is frozen(more details in [1]).

4 Choosing the parameters for CCA

CCA requires three parameters: �rst the projection space dimension (p), and
secondly the tw o time decreasing parameters (�(t) and �(t)) used by the adap-
tation rule.

Dimension p can be computed by fractal dimension estimation [6] or by
LPCA (see below). The learning factor �(t) requires no particular attention
(for example, exponential decrease betw een 0.95 to 0.01).On the other hand,
the neighborhood factor �(t) is critical: if �(t) decreases too slowly, the nonlin-
ear dependencies are not well unfolded, whereas a fast decrease compromises
the convergence. Although CCA outperforms many other nonlinear projec-
tion algorithms, this dependency on critical parameters (and on the density of
samples) raises diÆculties to unfold `hard nonlinear' structures like a spiral.
In suc h a case, CCA converges slo wly:large distances dni;j in the initial struc-
ture are poorly correlated with the corresponding distances dpi;j in the perfectly
unfolded and projected structure.

5 How to improve the basic idea of CCA?

Looking at the example of the spiral once again, CCA globally remains a good
idea, but perhaps the use of another distance than the Euclidian one could
improve the convergence. The best distance function should produce the same
result for both the initial spiral and its projection. T o reac h this goal, one needs
a kind of `curvilinear distance' Æni;j , like in Fig. 1c. Such a distance

1 is computed
inside the spiral and not through the spiral, like the Euclidian distance.

An approximation of the curvilinear distance can be computed in two steps
(see Fig. 2):

Step 1: Linking the centroids. After the vector quantization, the cen-
troids can be linked (or connected) so that they become a graph. Two centroids
get link ed when theyare the nearest ones from a database vector. This idea
of linking centroids is not new2. In CCA, the �rst utility of links is visual: for
example, crossing links often means projection faults.

1in accordance with the idea of sparse distance matrix suggested in [3].
2See for example the work of Bernd Fritzke [7]
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- a - - b - - c -

Figure 1: The `curvilinear distance': (-a-) two points in a spiral, (-b-) the Eu-
clidian distance between the tw o same points and (-c-) the curvilinear distance.

Figure 2: Approximation of the `curvilinear distance' by means of the shortest
path via the links betw een centroids (here the distance between both blackened
cen troids).

Step 2: Computing a distance via the links. Links also have a second
utilit y: they help to compute the abo vementioned curvilinear distance. A
good approximation of Æni;j is given b y the sum of the Euclidian lengths of all
links in the shortest path from centroid i to centroid j, provided there are no
`shortcut' links.

5.1 The Curvilinear Distances Analysis

We propose an enhanced version of Demartines' CCA, called CDA (Curvi-
linear Distances Analysis). The objective function remains identical, but the
Euclidian distance dni;j is replaced by the curvilinear distance Æni;j :

ECDA =

NX
i=1

NX
j=0

(Æni;j � dpi;j)
2F (dpi;j): (3)
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This objective function gives a new adaptation rule:

8i 6= j; �xpi = �(t)
Dn
i;j � dpi;j
dpi;j

u

�
�(t)max

i;j
(dpi;j)� dpi;j

�
(xpj � xpi ) (4)

whereDn
i;j is a generalized distance between centroids i and j in the n-dimensional

space:
Dn
i;j = (1� !(t))dni;j + !(t)Æni;j : (5)

The generalized distance Dn
i;j helps to build a unique algorithm that combines

the Euclidian distance and the curvilinear one; the result is an algorithm with
a third parameter !(t), varying betw een 0 and 1, and allowing to dynamically
switch betw een classical CCA and CDA.

6 Automatic c hoiceof the parameters

The second improvement brought to CCA is the complete automation for the
choice of parameters. Remember that the goal is to get a method as simple
as PCA, i.e. a method with a single parameter l (the acceptable loss in the
database variance).

P arametersfor v ector quantization. Usually, VQ requires tw o parame-
ters: the number of cen troids and a learning factor �(t). Instead, w euse a
dynamic VQ in which centroids are created when all available ones lie further
from a sample than a �xed threshold r. Of course, smaller is the threshold r,
better is VQ quality, so r can be made proportional to the tolerable loss l:

r = lmax
i;j

dni;j : (6)

P arametersfor CDA. CDA requires four parameters: �rst the projection
space dimension (p), and then the three parameters used by the adaptation
rule (�(t), �(t), !(t)).

The optimal dimension p of the space where to project is easily determined
by a method called LPCA (local PCA [8]). LPCA w orksby performing a
vector quantization3 and then a PCA on each Voronoi region, assuming that
the database is linear locally (i.e. at the scale of the Voronoi regions). Given the
tolerable loss l, the required dimension pVi

of the projection space is computed
for each Voronoi region Vi, according to PCA standard procedure; the global p
is simply the average of all pVi

. Obviously, no mathematical proof guarantees
that p will lead to an e�ective loss smaller than l; ho wever, w eassume (and
verify experimentally) that, in the scope of a V oronoi region,CDA w orks at
least as well as PCA.

3Nothing prevents to use the same vector quan tization for CDA and for LPCA!
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For the learning factor�(t) and the neighborhood factor �(t), one uses the
classical exponential decrease (as in numerous adaptative algorithms), within
the following arbitrary chosen bounds:

1:0 � �(t) � 0:02; (7)

1:0 � �(t) � mini;j Æ
n
i;j

maxi;j Æni;j
: (8)

In Demartines' CCA, the choice of the bounds for �(t) is quite diÆcult. The
CDA method is less sensitiv eto the choice of �(t), due to the enhancement
brought by the curvilinear distance: the curvilinear distance fastens and sim-
pli�es the convergence.

Finally, how to determine the last parameter !(t)? In tuitiv ely,if the de-
pendencies in the database are linear, !(t) should be set near zero since the
classical CCA works perfectly in this case. In the same way, if the dependencies
are strongly nonlinear, a value for !(t) close to one should take pro�tof the
curvilinear distances. With this reasoning in mind, the value of !(t) is empiri-
cally computed as a function of the quotients dni;j=Æ

n
i;j , measuring the linearity

of the database:

D(t) =

�
(i; j) j Æni;j � �(t)max

i;j
Æni;j

�
; (9)

!(t) = min

8<
:1;

�

� � 2
p
2

0
@1� 1

jD(t)j
X

(i;j)2D(t)

dni;j
Æni;j

1
A
9=
; ; (10)

where D(t) is simply a subset of all pairs (i; j).

7 Some illustrative examples

This section shows some arti�cial databases projected with the CDA algorithm.
Their purpose is only illustrative: muc h more complex structures can be suc-
cessfully handled by CDA, but their visual aspect is less meaningful.

Although the implementation allows to tune the parameters, all examples
below are projected by the automatic method. All �gures below include some
vectors of the database (shown as points), all cen troids (circles) and links
(lines). Centroids and links are not shown for the projections of the knot
and the sphere.

The horseshoe (Fig. 3) is a tw o-dimensional rectangle embedded in a three-
dimensional space, slightly curved to obtain three quarters of a cylinder. The
horseshoe is a classical benchmark for nonlinear projection methods.

The trefoil knot (Fig. 4) is a mono-dimensional object embedded in a three-
dimensional space. The CDA unties it in a mono-dimensional space rapidly
and automatically.

The projection of the sphere (Fig. 5) is more complex. Indeed, a good
projection in a plane requires that the algorithm cuts and stretches the sphere
(if not, the projection would not be bijective).
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Figure 3: Nonlinear projection of the horseshoe (from dimension 3 to 2).

Figure 4: Nonlinear projection of a trefoil knot (from dimension 3 to 1).

8 Conclusion

The CDA method nicely answers the problem of nonlinear projection. The
whole process is as easy as PCA, but with the advantage of nonlinear capabil-
ities. Thanks to the approximation of curvilinear distances, the CDA outper-
forms the classical CCA on strongly nonlinear databases. The CDA algorithm
also shows more 
exibility than the Kohonen self-organized maps (SOM, see
for example [9]), which have a �xed shape.

F urther w orkwill focus on improvements on the in terpolation algorithm
and on the robustness against noise.
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Figure 5: Nonlinear projection of the sphere (from dimension 3 to 2).
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