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Abstract. A system for the automatic segmentation of fluorescence micrographs
is presented. In a first step positions of fluorescent cells are detected by a fast
learning neural network, which acquires the visual knowledge from a set of train-
ing cell-image patches selected by the user. Guided by the detected cell positions
the system extracts in the second step the contours of the cells. For contour ex-
traction a recurrent neural network model is used to approximate the cell shapes.
Even though the micrographs are noisy and the fluorescent cells vary in shape
and size, the system detects at minimum 95% of the cells.

1 Introduction

In the last decades experimental research in biomedicine was influenced by automation
of sample preparation and digital microscopy imaging. Research groups in related fields
are now enabled to produce large sets of digitized micrographs. Hence the problem of
efficient evaluation of large datasets arises, for example in the case of high-throughput
analysis of biopsies. In this work we present an architecture for automatic evaluation
of fluorescence micrographs. The micrographs are grey value images, recorded by a
CCD camera-equipped microscope. The images were generated with a standardized
fluorescence microscopy technique, developed by the biomedical research group at the
University of Magdeburg. The images show fluorescent lymphocyte cells in tonsil tis-
sue. For the purpose of a final data analysis in each image the fluorescent cells have to
be detected and the contour of each fluorescent cell has to be extracted. The contour
information is needed to measure the grey value intensity distribution across the cell
body which is an important cell feature to the biomedical researcher.
Evaluation of large numbers of micrographs by human experts is almost impossible
because during the visual inspection of noisy intensity images the observer’s concen-
tration decreases rapidly, which makes the evaluation time consuming and leads to non-
reproducible results.
In this paper we present a system for automatic evaluation of the fluorescence micro-
graphs. An image is processed in two steps: In the first step the positions of fluorescent
cells are detected by a pre-trained neural network, in the second step the detected cell
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positions are used as “focus points” for guiding the system to the cells in the image. In
the focused image patches a recurrent neural network is used to extract the cell contour.
Segmentation algorithms in related computer vision applications are usually based on
(i) flooding schemes in gradient mountains [Meyer and Beucher, 1990], (ii) wave prop-
agation [Hanahara and Hiyane, 1990], (iii) boundary tracing [Galbraith et al., 1991] or
(iv) backtracking search through combinations of line segments by calculating a saliency
measure [Jacobs, 1996]. In our present study the considered objects are lymphocytes in
tissue, so their shapes show considerable variation and are called mainly convex. This
makes it very difficult to define one common contour model, which fits for all cells
in the image. Furthermore, since the images are generated by immunofluorescence,
heterogenous signals, reflecting different concentrations of cell surface proteins, cause
local distortions in the cells’ contours.

2 The Fluorescence Micrograph Segmentation System

The architecture of the system is shown in figure 1. The system consists of two main
modules. The first module performs the detection of fluorescent cells as focus points
(see arrow (1) in fig. 1). It consists of a neural classificator which is trained to compute
evidence values for each image point. The evidence values represent the probability
that a point is occupied by a fluorescent cell. The positions of the fluorescent cells are
computed by a simple post-processing of the evidence values.
The second module extracts at each focus point the cell contour (see arrow (2) in fig. 1)
by a local figure-ground separation which is performed by a recurrent neural network
for each cell, separately. The network is designed for making convex structures “pop-
out” within a focused image region. The result of this separation is used to extract the
contour line of the cell. The training of the cell detection and the two modules are
explained in the following subsections.

2.1 Cell Detection with the Local Linear Map

The training and the application of the first module is explained only draftly (for details
see [Nattkemper et al., 1999]). For detection of the fluorescent cells we use a neural
network of local linear map-type (LLM) [Ritter, 1991]. To train the LLM a set of image
patches containing cells as positive training examples is labeled by a biomedical expert
using a computer mouse. The patch size is set to 15 � 15 pixels so that it covers the
whole fluorescent cell body. A second set of negative examples is generated by choos-
ing randomly from the same image a number of patch centers subject to the condition
of having a distance of at least 5 pixels to each of the patches from the positive ex-
ample set. For each patch a 6-dimensional feature vector x is computed using 6 filter
masks, which are eigenvectors obtained from a principal component analysis on the set
of hand-selected (i. e. , positive) cell patches. The eigenvectors are also referred to as
eigencells (see left column in fig. 1). They belong to the six largest eigenvalues. Thus,
the image patch of 15 � 15 = 225 dimensions is projected to a 6-dimensional sub-
space which covers the most of the patch variance. This is an established technique in
Computer Vision (see [Turk and Pentland, 1991]). Calculating the feature vectors for
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Fig. 1. An illustration of the segmentation system. See the text for details.

the positive and the negative input examples delivers the training set of (input, output)-
pairs � = f(xi;yi)gi, with yi = 1 if sample i is from the positive training set, yi = 0
otherwise.
The LLM combines unsupervised and supervised learning in contrast to the widely used
multi-layer perceptron trained with back-propagation [Rumelhart et al., 1986]. The LLM
learns a mapping C : IRdin 7! IRdout by (i) a vector quantization of the input feature
space based on � with a set of l = 5 reference vectors and (ii) an adaption of lo-
cal linear mappings into the output space, which are attached to each reference vector.
The trained LLM-classificator performs a mapping of image point features x 2 IR 6 to
evidence values in [0; 1] that represent the degree of belief that a fluorescent cell is posi-
tioned there. The evidence values written to the image coordinates of their correspond-
ing image point form the so called evidence map of the input image. A thresholding
procedure combined with a local maximum search in the evidence map finally delivers
the positions of fluorescent cells.

 D-Facto public., ISBN 2-930307-00-5, pp. 177-182B
orks

0,
ES Netw

r 0
A l 

0ug
ra

2
NN Neu
e l 

'2 l 
s i

000 icia
 pr

 Artif
( A

p on 
B 8 

ro m 
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 -  S
u  

 E an
m ,

urope
)



2.2 Contour Extraction with the CLM

The second module performs the extraction of the cell contours. For each focus point
its 20 � 20-neighborhood is selected. This size is chosen to ensure that it includes the
whole cell body. In this neighborhood the subregion which is occupied by the cell body
is separated from its surrounding by figure-ground segmentation using the competitive
layer model (CLM) [Ritter, 1990],[Wersing and Ritter, 1999] for feature binding, which
can only be outlined in short. The CLM consists of two layers of topographically orga-
nized nodes. One layer is called the ground layer the other one the figure layer. Each
node corresponds to one edge feature in the neighborhood and represents its tendency
of grouping into one of the layers through its activity value. The gouping is achieved by
high activities for cell-belonging nodes in the figure layer (grey dots in grouping result
in fig. 1 and 2) and low activities of the same nodes in the ground layer (white dots in
grouping result in fig.1 and 2), caused by competitive and cooperative interactions be-
tween the features. For features belonging to the surrounding of the cell body the nodes
behave vice versa. The dynamical integration of noisy local edge orientations into a
coherent cell body group achieves a very precise and noise resistent segmentation into
cell body and background (fig. 1(b)). This way a segmentation of the neighborhood is
achieved which is very robust due to the dynamical integration of noisy local curvature
information into a coherent salient group, representing the fluorescent cell body.
To compute a one-pixel wide cell contour from the separated cell body region standard
morphological closing- and erode-operators are applied [Sonka et al., 1993]. An illus-
tration of the cell contour extraction is given in the right column of figure 1 and in fig. 2
below : For each point in the focussed neighborhood the orientation of the grey value
gradient is computed as its edge feature (arrow (a) in fig. 1 and 2). After the grouping
process (arrow (b) in fig. 1 and 2) the edge features are grouped in the ground layer
(white dots) or in the figure layer (grey dots). Based on the separated cell body the
contour is computed (arrow (c) in fig. 1 and 2).

3 Results

The segmentation system was applied to fluorescence images of lymphocytes in tonsil
tissue. The 329� 254-sized images were recorded in a highly standardized procedure
and show densely clustered fluorescent cells, which occlude each other partially. The
results for two example images are shown in fig. 3. For measuring the correctness the

a cb

Fig. 2. Processing steps of the contour extraction. See text for details.
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Fig. 3. The results for two fluorescence micrographs: Images (a) and (b) show two different fluo-
rescence micrographs of lymphocytes in tonsil tissue. In the first step the positions of fluorescent
cells are computed (see white dots in (c),(d)) for focussing. In the second step the cell contours
are extracted for the fluorescent cells at the focus points. The contour extraction results are white
plotted in images (e) and (f).

results were visually inspected by a highly experienced biomedical expert. According to
the expert the system finds a minimum of 95% of the fluorescent cells (see fig. 3 (c),(d))
with a low rate of false positives of approximately 10%. The positions of the cells are
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computed in less than 1 minute. The extraction of the cell contours for the detected
cells with the CLM were sufficiently accurate, according to the expert. The CLM’s
segmentation performance remains constant under local distortions in the convexity of
the contour in grey value intensity (see fig. 3 (e),(f)). The computation time for the
contour detection of about 250 cells less than 2 minutes on a Pentium II 450 MHz
douple processor machine.

4 Conclusion

We presented a system for segmentation of fluorescence micrographs. The results were
carefully inspected by a biomedical expert to measure accuracy and for comparison with
human performance. It turned out that our approach works highly accurate and leads to
reproducible results, in contrast to human employees. Thereby the system paves the
way to automatic evaluation of this kind of microscope data, enabling high-throughput
topological screening of lymphocytes in many types of tissue.
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