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Abstract. This w ork shows how to train the activation function in

neuro-wavelet parametric modeling and how this improves performance

in a number of modeling, classi�cation and forecasting.

1. Introduction

Neuro-wavelet net works (NWN's) [1, 2, 3 ] are widely used in modeling, fore-

casting and classi�cation problems, because they are good approximators of

strongly non-linear functions. Y et, it is mandatory to accurately select the

net w ork structure, in order both to obtain good performance and to reduce the

number of free parameters, and consequently the size of training set.

An interesting solution to many applications comes from neuro-wavelet

parametric modeling NWPM [4], which consists of describing a given problem

in terms of a parametric model based on NWN's. A set of prede�ned parameters

(weigh ts and centers of the NWN) is computed (via training) from a collection

of numeric samples of the problem. The extracted parameters have a strong

relationship with the problem, of which they are a compact repr esentation, and

they allow either to forecast future samples, or to predict the behavior of the

problem in di�erent operating conditions, or to classify the samples.

Although it has been proven by several authors that any bounded func-

tion can be approximated with any giv en accuracy with a NWN, one of the

requirements of NWPM is to use the smallest possible number of parameters

which provide the desired accuracy. Therefore one key issue in NWPM is to

�nd the optimal activation function (e.g. Gaussian, Wavelet, sigmoid, spline)

which minimizes the number of parameters that provide a given accuracy).

The optimal function can seldom be derived analytically by examining the

problem (that happens only in structur ed neuro-wavelet networks). Instead, in

most cases the optimal function is unknown and therefore most users of NWPM

tend to choose the activ ation functionthey are more familiar with. In other

cases, an empirical search from a set of commonly used functions is performed.

Scope of this work is to show how the optimal activ ation function can be

traine d. T rainingactiv ation functionis not yet widely used, although an ex-

ample is proposed in [4]. T raining algorithm derives from neuro-fuzzy uni�ca-

tion [1 ] and may signi�cantly improve modeling performance.
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Figure 1: a) Examples of measured optoelectric characteristics of specimen. b)

Block diagram of traditional neuro-fuzzy approaches

1.1. Case Study

We have been dealing with an application where a set of cylindrical specimen

had to be classi�ed according to their geometrical (diameter, thickness), electri-

cal (conductivity) and optical (brightness) properties. Such properties had to

be measured with a set of three very c heap sensors scanned over the specimen,

which provided as many time-varying signals, as shown in �g. 1 (signals of the

three sensors are plotted aside on the same plot, for three di�erent samples).

The specimen had to be classi�ed according to the shape J(t) of signals.

Due to the poor performance of available sensors, the relationship betw een the

measured shape and specimen properties was di�cult to express analytically.

We call: ~Q 2 <4, the vector of geometrical and optoelectric properties of

specimen, associated with J(t) : < ! <, the sensor signal as a function of time

t; ~J 2 <10, the sensor vector con taining 10 samplesJ(ti) at regular intervals.

Scope of the problem was to �lter out the unavoidable measurement noise

and to compensate for sensor non-idealities, in order to provide a clean signal

J(t) to the classi�er and to reduce misclassi�cation.

2. Parametric Modeling and Characterization

Most traditional approaches are based on the black-box approach shown in

�g. 1, where a NWN predicts the elements of ~J (namely, the samples of J(t)

at prede�ned points) as a function of input vector ~Q, or vice-versa.

At �rst, we drew some preliminary considerations on such approaches:

1. the number of net work outputs equals the number of measured points.

F rom �g. 1 it can be observed that all signals are relatively slo wly vary-

ing, therefore statistical correlation of adjacent elements of ~J approaches

unity (� 0:93 for sensor 1) as well as, consequently, the correlation be-

tween weigh ts of adjacent neurons.

2. Approximation errors can produce estimates of signals which are physi-

cally non plausible (for instance, a local increase instead of a decrease).

3. The positions where the signals are measured are not evenly distributed

and often di�er among di�erent manufacturers, therefore signals cannot

always be compared directly. Also the number of points may vary .
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a. b.

Figure 2: Block diagram of: a) NWPM; b) NWPM estimator/forecaster.

For all these and a few other reasons, w eha vedecided to use a NWPM ap-

proach [4], which is composed of from one to three cascaded blocks (see �g. 2):

� A small NWN (A) is used as a parametric model of the signal, that is,

as a function J(t) of the single net w orkinput t. The collection of free

parameters of A (weigh ts, cen ters and biases) constitutes a vector ~P which

uniquely identi�es an estimate Ĵ(t) of J(t) and thus of vector ~J .

As ~P is the vector of the free parameters of A, it can be evaluated by

simply training A, to reduce the output error kĴ(t)� J(t)k.

� An optional a-p osteriori corrector, to reduce estimation error. We noticed

that each estimate Ĵ(ti) of J(ti) always was sligh tlybiase dand the bias

E
�
Ĵ(ti)� J(ti)

�
= f(ti)

w as a function ofti. We have therefore measured and tabulated that par-

ticular function f(ti) and subtracted from the estimate (namely,
^̂
J(ti) =

Ĵ(ti)� f(ti)), as sho wn in �g. 2.a.

The dra wback of having an a-posteriori model corrector is tw ofold: an

additional bloc kis required, and the function f(ti) must be tabulated,

therefore cannot be continuous, as would Ĵ(t) be. This corrector can be

avoided by training the activation function of the NWN, as described in

sect. 3..

� A larger NWN (B) is used as a parameter estimator which predicts the

parameter vector ~P (instead of ~J ) as a function of input vector ~Q.

The NWPM can be used in either of the following fashions:

1. by training the netw ork A alone, to get just a compact representation ~P

of the problem (to be used, for instance, in classi�cation instead of ~J );

2. by supplying a representation ~P to A, to reconstruct the original function;

3. by combining the tw o previous fashions:net w ork A is �rst trained, then

the parameter vector ~P is used to reconstruct the original signal (for

instance, to clean the measurements from noise);
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Sensor 1st layer size SRMSE Improvement w.r.t. Gaussian

F (z) neurons of ~P �av �co ��av=�av(%) ��co=�co(%)

Gaussian - 4 0.332 0.255 - -
1 trained 6 4 0.171 0.166 48 25

trained 8 4 0.220 0.214 34 16

Gaussian - 4 0.317 0.264 - -
2 trained 6 4 0.196 0.177 38 33

trained 8 4 0.196 0.186 38 30

Gaussian - 4 0.125 0.103 - -

3 trained 4 4 0.126 0.088 0 15

trained 8 4 0.100 0.087 20 15

T able 1:Approximation error (SRMSE) of network A, with H = 1.

4. by letting netw ork B predict the parameter vector ~P instead of ~J from

the input vector ~Q. Signal Ĵ(t) can then be reconstructed from ~P.

In all cases ~P is the main input or output of NWPM. Advantages and drawbacks

of NWPM are described in [4].

2.1. Performance Index

As a performance index for all NWN's, we adopt the Standardize d R oot Mean

Square Err or(SRMSE):

� =

vuut
PP

p=1

PM

j=1(y
p
j � ŷ

p
j )

2

PP

p=1

PM

j=1(y
p
j � y)2

where y =
1

PM

PX
p=1

MX
j=1

y
p
j (1)

where P and M are, respectively, the number of samples in the training (or

validation) set and the number of netw ork outputs;ypj is the j-th component

of the p-th output vector ~Y p in the training (or validation) set, while ŷ
p
j is the

corresponding netw ork estimate.

T able 1 lists the SRMSE of netw ork A both alone (�av) and follow ed by the a-

posteriori corrector (�co), for the case study, with Gaussian activation function

(the commonly used function which empirically provides best performance).

3. Training Activation Function

The need foran a-posteriori model corrector indicates that the shap eof Ĵ(t)

is far from optimal and de�nitely needs improvements. The performance of

di�erent netw orks A mainly depend on how well their activation function �ts

the signal J(t). See [4] on how to choose the best NWN for NWPM.

In practice, none of the traditional functions is optimal and no other com-

monly used function would be signi�cantly better under this respect. The only

w ayto improve model accuracy would be to increase the number of hidden

neurons, but this would increase the number of free parameters (size of ~P),

thus reducing the e�ectiveness of NWPM approach.
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A solution to the problem would be to design an ad-hoc activation function

to minimize kf(ti)k and therefore the average modeling error. Direct minimiza-

tion is not trivial, therefore we tried the new idea of \training" the activation

function, as described below.

By using the terminology and symbols proposed in [1], w e�rst selected,

for A, a tw o-la yers 1 � H � 1 WRBF-0(F (z))-0(lin) (in the old terminology,

an MLP with H hidden units with F (z), plus 1 output neuron with linear

activ ation, respectively), for a total of 3H + 1 parameters:

y(x) = Hlin
0

�
H
F (z)
0

�
x; ~C1; ~W 1; 0

�
; 0; ~W 4;�4

�
(2)

where the activation function F (z) is de�ned by another tw o-la yer 1�N � 1

WRBF-0(tanh)-0(lin) which is known to be a universal approximator:

F (z) = Hlin
0

�
Htanh

0

�
z; ~C2; ~W 2;~0

�
;~0; ~W 3;�3

�
(3)

By substituting (3) in (2) we get a four-layers 1�H � (NH)�H � 1 WRBF-

0(lin)-0(tanh)-0(lin)-0(lin), where input and output layers (1st and 4th) coincide

with the MLP, while the inner layers (2nd and 3rd) implement its activ ation

function.

This four-la yer NWN can be trained using a traditional bac kpropagation

rule [1, 2], with the same training set used for net w ork A.Once trained, the

parameters in (3) (namely, 2nd and 3rd layer) are frozen and they are identical

for all signals, as they de�ne the shape of a �xed but trained activ ation func-

tion. The only parameters which remain free for each pro�le are the 3H + 1

parameters in (2) (namely, 1st and 4th layer) which compose vector ~P.

It must be pointed out that, although that appears to be a traditional

four-la yer net w ork, in practice the two inner layers are trained apart and, once

trained, their weigh ts are frozen and they are not part of the compact repre-

sentation ~P. Only the two outer layers are part of the NWPM approach and

their weigh ts are the elements of ~P .

T raining of the activation function takes place in a slightly uncommon way:

the input and output layers are trained with the nominal values of �, while the

tw o inner layers are trained with muc h smaller training coe�cients (namely, K

times low er, whereK is the size of the training set). The �rst specimen data

are applied to the netw ork, which is trained for 200 epochs, then next specimen

is applied for another 200 epochs, etc., until all training specimen have been

applied. This process (on the whole training set) is then repeated a few times.

By doing so, the two outer layers can learn the shape of each pro�le in less than

200 epochs, while the tw o inner layers require all the samples in the training

set (with 200 epochs each) to train.

As a consequence of such training, the inner layers slowly learn from all

the actual pro�les the optimal shape which reduces the average approximation

error to a minimum. After a su�ciently long training (as many as � 4 � 105

epochs, but each epoch is very fast to compute, therefore the whole training

can last just a few minutes), the shape of the activ ation function has been
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Figure 3: a) Comparison of estimated signals for sensor 2. b) Trained F (z).

learned and is then frozen forever, to be later used to associate eac h pro�le

with is compact representation ~P . F or what con vergenceregards, the tw o

inner layers do have suc h a small learning coe�cient that their convergence

is always guaranteed. Remember that this is the major di�erence betw een a

2-la yers NWN with trainable activation functions and a 4-layers NWN.

4. Performance and conclusions

T able 1 shows that modeling error with the trained F (z) reduces by about 35%

(average, without a-posteriori corrector). F urthermore the a-posteriori correc-

tor has less e�ects on performance, therefore it can be removed. Figure 3.a

compares measured and predicted signals for sensor 2, while �g. 3.b compares

the Gaussian and the trained activation functions.

This paper has proposed a method to successfully train the activation func-

tion in a class of neuro-wavelet parametric modelingproblems. T raining has

signi�cantly improved the modeling and classi�cation performance for the pro-

posed case study and for some other industrial applications not reported here.
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