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Abstract. We present a new method to compute depth-three thresh-
old circuits for pattern classi�cation problems. The �rst layer of the
circuits is calculated from a sample set S of the classi�cation problem
by a local search strategy that minimises the error on S for each in-
dividual gate. The local search is based on simulated annealing with
the logarithmic cooling schedule c(k) = �= ln (k + 2). The parameter �
depends on S and the neighbourhood relation is determined by the clas-
sical Perceptron algorithm. The approach is applied to the recognition
of focal liver tumours.

1 Introduction

The paper describes method of computing depth-three threshold circuits
for pattern recognition purposes. The approach is applied to focal liver tumour
recognition, where the CT images are classi�ed by the threshold circuit without
any pre-processing. From a general point of view, the threshold circuits are
designed for binary classi�cations of points from an n-dimensional space. This
problem has been studied for a long time and is closely related to algorithms
solving systems of linear inequalities.

Agmon proposed in 1954 [2] a simple iteration procedure to �nd solutions
of linear inequalities lj(~z) = ~aj �~z+bj � 0, j = 1; ::: ;m. In pattern recognition,
Agmon's method became popular as the classical Perceptron algorithm [16].
For sets S of n-dimensional vectors ~x that are separable by a linear threshold
function into \positive" and \negative" examples, Minsky and Papert [13]
proved the following convergence property: If ~w� is a unit vector solution to
the separation problem, then the Perceptron algorithm converges in at most
1=�2 iterations, where � := min[~x;�]2S j ~w

� � ~x j, � 2 f+;�g. The parameter �
can be exponentially small in terms of the dimension n.

In general, the simple Perceptron algorithm performs well even if the sam-
ple set is not consistent with any weight vector ~w of linear threshold functions,
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see [9]. For our problem of CT-image classi�cation, one can hardly assume
that positive and negative examples are separable by a single linear thresh-
old function. In order to reduce the classi�cation error, we try to compute a
bounded-depth circuit consisting of linear threshold functions. The threshold
functions, in particular the gates of the �rst level, are determined by a learning
procedure from positive and negative examples S of the classi�cation problem.

H�offgen [12] has shown that �nding a linear threshold function that min-
imises the number of misclassi�ed examples is NP-hard in the case of arbitrary
sample sets. In our approach, we utilise a combination of logarithmic simulated
annealing and the Perceptron algorithm for this computationally hard minimi-
sation problem. The combination has been studied in [6] for samples generated
by non-linear threshold functions. The approach belongs to the class of local
search methods [1].

To our knowledge, the �rst paper on learning-based methods applied to
X-ray diagnosis was published by Asada et al. [7]. Since then, the research
has been concentrating on using commercially available neural networks for
medical image classi�cation [8, 10, 14, 15, 18].

In a number of papers, feature extraction is used in learning-based clas-
si�cation methods [14, 17]. In [14], for example, a high classi�cation rate of
nearly 98% is reported, where the Wisconsin breast cancer diagnosis (WBCD)
database of 683 cases is taken for learning and testing. The approach is based
on feature extraction from image data and uses nine visually assessed charac-
teristics for learning and testing. Among the characteristics are the uniformity
of cell size, the uniformity of cell shape, and the clump thickness.

The paper continues the research from [3]. In the present paper, we describe
the computation of depth-three threshold circuits from positive and negative
examples that are designed to recognise focal liver tumours. The input are
fragments of CT images of size 119� 119 with an 8 bit grey scale in DICOM
standard format [11]. Therefore, the input size is n = 14161 and the input
values range from 0 to 255. For the learning procedure, we used 400 positive
(focal liver tumours) and 400 negative (normal liver tissue) examples. The
circuits were tested on 100 + 100 examples (di�erent from the learning set),
and we obtained a correct classi�cation of about 94%.

2 A Simulated Annealing-Based Heuristic

We assume that rational numbers are represented by pairs of binary
tuples of length d and denote the set of linear threshold functions by

F :=
[
n�1

Fn; where Fn =
�
f(~x) : f(~x) =

nX
i=1

wi � xi � #f
	
;

where wi and xi are equal to �(pi; qi) for pi; qi 2 f0; 1gd.
The functions from F are used to design single-output circuits C of threshold

functions: A circuit C is de�ned by the underlying acyclic directed graph G =
[E; V ], E � V � V . The graph G has n input nodes labelled by variables x1,
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� � �, xn, and j V j �n nodes vf labelled by threshold functions f 2 F , where
the number of incoming edges of vf has to be consistent with the number of
variables of f . Finally, one vf is chosen as the output vout of C.

The depth of C is the maximum number of edges on a path from an input
node xi to the output node vout. The nodes that are not input nodes are called
gates. The function F (C) computed by C is de�ned as follows: The gates of
the �rst level output 1 or 0 depending on whether or not

Pn
i=1 wi �xi � #f . In

the same way, the gates at higher levels have Boolean outputs only. Therefore,
when all paths from input nodes to vout are of the same length, the gates at
level 2; 3; :: do compute Boolean threshold functions. Thus, we have F (C) :
f0; 1gn�d ! f0; 1g.

In the present paper, the maximum depth of C is three; circuits of depth
one are simply the elements of Fn, and in Section 3 we consider circuits of
depth two and three, respectively. In our application, each of the threshold
functions from the �rst level is equally important for the overall classi�cation
result of the depth-three circuit. Therefore, the weights at the input lines of
second level functions (gates) can be normalised to the value 1 and only the
threshold values depend on the sample set S.

For a given sample set S, we assume S = f [~x; �] g for � 2 f+;�g and
~x = (x1; :::; xn) where xi = (pi; qi); pi; qi 2 f0; 1gd. Furthermore, we consider
a particular number n of variables only and we take the set F := Fn as the
con�guration space.

The objective of our optimisation procedure is to minimise the number
jS�f j of misclassi�ed examples, S�f := f [~x; �] : f(~x) < 0& � = + or f(~x) >
0& � = �g. The objective function is de�ned by Z(f) :=jS�f j, and Fmin(S)
denotes the set of minimum-error solutions.

Given f =
Pn

i=1 wi � xi � #f , the neighbourhood relation Nf is suggested
by the Perceptron algorithm [16] and de�ned by

wi(f
0) := wi � yj � xij=

vuut
nX

i=1

w2
i ; j 2 f1; 2; ::: ;mg; (1)

for all i simultaneously and for a speci�ed j that maximises j yj � #f j, where

yj =
Pn

i=1 wi � xij . The threshold #f 0 is equal to #f + yj=
pPn

i=1 w
2
i .

Given a pair [f; f 0], f 0 2 Nf , we denote by G[f; f 0] the probability of
generating f 0 from f and by A[f; f 0] the probability of accepting f 0 once it has
been generated from f .

To speed up the local search for minimum error solutions, we take a non-
uniform generation probability where the transitions are forced into the di-
rection of the maximum deviation. We used this approach before [4] in the
context of equilibrium computations. The non-uniform generation probability
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is derived from the Perceptron algorithm: For the current hypothesis f we set:

U(~x) :=

8>>>><
>>>>:

�f(~x); if f(~x) < #f and �(~x) = +;

f(~x); if f(~x) � #f and �(~x) = �;

0; otherwise.

(2)

For f 0 2 Nf we set G[f; f 0] := U(~x)=
P

~x2S�f U(~x). Thus, preference is given
to the neighbours that maximise the deviation. Now, our heuristic can be
summarised in the following way:

1. The initial hypothesis is de�ned by wi = 1; i = 1; 2; ::: n and # = 0.
2. For the current hypothesis, the probabilities U(~x) are calculated; see (2).
3. To determine the next hypothesis fk, a random choice is made among

the elements of Nfk�1
according to the de�nition of G[f; f 0].

4. When Z(fk) � Z(fk�1), we set A[fk�1; fk] := 1.
5. When Z(fk) > Z(fk�1), a random number � 2 [0; 1] is drawn uniformly.
6. If A[fk�1; fk] := e�(Z(fk)�Z(fk�1)=c(k) � �, the function fk is the new

hypothesis. Otherwise, we return to 3 with fk�1.
7. The computation is terminated after a prede�ned number of steps K.

Hence, instead of following unrestricted increases of the objective function, our
heuristic tries to �nd another \initial" hypothesis when the di�erence of the
number of misclassi�ed examples is too large.

The crucial parameter c(k) is de�ned by c(k) = �= ln(k + 2); k = 0; 1; ::: .
The parameter � depends on the underlying energy landscape. When � is
larger than or equal to the maximum value of the minimum escape depth from
local minima, one can prove the convergence to minimum-error solutions for
a more general neighbourhood relation that provides the reversibility of the
con�guration space. In this case, the convergence analysis from [5] indicates

a time complexity of roughly n�+O(1), i.e., after n� + logO(1) (1=�) transitions
the con�dence that a minimum-error threshold function has been computed is
larger than 1� �.

3 Implementation and Results

The heuristic was implemented in C++ and we performed computational
experiments on SUN Ultra 5/333 workstations with 128 MB RAM. In the
experiments, we used fragments of CT images of size 119 � 119 with 8 bit
grey levels. From 400 positive (with focal liver tumours) and 400 negative
examples (normal tissue) several independent hypotheses of the type w1 � x1 +
� � � + wn � xn � # were calculated for n = 14161. We tested the hypotheses
simultaneously on 100 positive and 100 negative examples. The test examples
were not presented to the algorithm during the training phase.

In Figure 1 and Figure 2, typical representatives of negative and positive
examples are shown. It is important to note that the CT examinations were
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performed with comparable imaging parameters, as can be seen from the bright-
ness and contrast of the examples.

Normal liver tissue: Negative examples. Focal liver tumour: Positive examples.

Figure 1 Figure 2

Table 1 summarises typical results for circuits of depth 1; :::; 3 Due to the
long run-time, only a few experiments have been performed so far, and therefore
it is di�cult to present average values). Each function (gate) from the �rst level
was trained on a random choice of 100+100 examples out of 400+400 examples.
The examples were learned with zero error after about 25000 to 35000 changes
of the hypothesis for a single linear threshold function (gate from the �rst level).
The results are for � = 60.

The depth-three circuit consists of three sub-circuits of depth two, where
each depth-two circuit has 11 threshold functions at the �rst layer. The output
gate of the depth-three circuit is a simple majority function. Thus, the depth-
three circuit consists of 3 � (11 + 1) + 1 = 37 linear threshold functions (gates).
Each of the threshold functions of the �rst level (i.e., each input gate) has
n = 14161 inputs, i.e., the total number of input lines that are connected to
the 14161 input nodes (pixel values) is 3 � 11 � 14161 = 467313.

Depth of Learning Errors on Errors on Percentage
Circuits Run-Time POS NEG T POS T NEG of Errors

1 � 275 min 0 0 32 36 34%
2 � 3000 min 0 0 13 17 15%
3 � 9000 min 0 0 4 8 6%

Table 1

The test on a single image from the 100 + 100 test examples is performed
within a few seconds. The parameter settings \� = 60", \100 out of 400", and
\11" for the number of gates at the �rst layer of depth-two (sub-)circuits were
determined by computational experiments.

We think that one reason for the good classi�cation rate of 94% is the
homogeneous imaging technique that was used to obtain the training and test
material.

Acknowledgement

The authors would like to thank Eike Hein and Daniela Melzer (HUB,
Institute of Radiology) for preparing the image material.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 1-6



References

[1] E.H.L. Aarts. Local Search in Combinatorial Optimization. Wiley & Sons, 1998.

[2] S. Agmon. The Relaxation Method for Linear Inequalities. Canadian J. of Mathe-

matics, 6(3):382 { 392, 1954.

[3] A. Albrecht. On Threshold Circuit Depth. In: M. Verleysen, ed., Proc. 3rd Eu-

ropean Symp. on Arti�cial Neural Networks, ESANN'95, pp. 211{216, Brussels,
1995.

[4] A. Albrecht, S.K. Cheung, K.S. Leung, and C.K. Wong. Stochastic Simulations
of Two-Dimensional Composite Packings. J. of Comput. Physics, 136(2):559 {
579, 1997.

[5] A. Albrecht and C.K. Wong. On Logarithmic Simulated Annealing. In: J. van
Leeuwen, O. Watanabe, M. Hagiya, P.D. Mosses, T. Ito, eds., Theoretical Com-

puter Science: Exploring New Frontiers of Theoretical Informatics, pp. 301 {
314, LNCS Series, vol. 1872, 2000.

[6] A. Albrecht and C.K. Wong. Combining the Perceptron Algorithm with Loga-
rithmic Simulated Annealing. To appear in: Neural Processing Letters.

[7] N. Asada, K. Doi, H. McMahon, S. Montner, M.L. Giger, C. Abe, Y.C. Wu.
Neural Network Approach for Di�erential Diagnosis of Interstitial Lung Diseases:
A Pilot Study. Radiology, 177:857 { 860, 1990.

[8] D.B. Fogel, E.C. Wasson III, E.M. Boughton and V.W. Porto. Evolving Ar-
ti�cial Neural Networks for Screening Features from Mammograms. Arti�cial
Intelligence in Medicine, 14(3):317, 1998.

[9] S.I. Gallant. Perceptron-Based Learning Algorithms. IEEE Trans. on Neural

Networks, 1(2):179 { 191, 1990.

[10] H. Handels, Th. Ro�, J. Kreusch, H.H. Wol� and S.J. P�oppl. Feature Selection
for Optimized Skin Tumour Recognition Using Genetic Algorithms. Arti�cial
Intelligence in Medicine, 16(3):283 { 297, 1999.

[11] R. Hindel. Implementation of the DICOM 3.0 Standard. RSNA Handbook, 1994.

[12] K.-U. H�o�gen. Computational Limitations on Training Sigmoid Neural Net-
works. Information Processing Letters, 46(6):269 { 274, 1993.

[13] M.L. Minsky and S.A. Papert. Perceptrons. MIT Press, Cambridge, Mass., 1969.

[14] C.A. Pea-Reyes and M. Sipper. A Fuzzy-genetic Approach to Breast Cancer
Diagnosis. Arti�cial Intelligence in Medicine, 17(2):131 { 155, 1999.

[15] A.L. Ronco. Use of Arti�cial Neural Networks in Modeling Associations of Dis-
criminant Factors: Towards an Intelligent Selective Breast Cancer Screening.
Arti�cial Intelligence in Medicine, 16(3):299 { 309, 1999.

[16] F. Rosenblatt. Principles of Neurodynamics. Spartan Books, New York, 1962.

[17] C. Ro�manith, H. Handels, S.J. P�oppel, E. Rinast, and H.D. Weiss. Computer-
Assisted Diagnosis of Brain Tumors Using Fractals, Texture and Morphologi-
cal Image Analysis. In: H.U. Lemke, ed., Proc. Computer-Assisted Radiology,
pp. 375 { 380, 1995.

[18] R. Tawel, T. Dong, B. Zheng, W. Qian, and L.P. Clarke. Neuroprocessor Hard-
ware Card for Real-time Microcalci�cation Detection at Digital Mammography.
In: Proc. Meeting of the Radiological Society of North America, p. 172, 1994.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 1-6




