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Abstract. This paper presents an adaptive procedure for the linear and non-linear separation of

signals with non-uniform, symmetrical probability distributions, based on both simulated annealing

and competitive learning methods by means of a neural network, considering the properties of the

vectorial spaces of signals, and using a multiple linearization in the mixture space.

1 Introduction

The problem of linear blind separation of sources involves obtaining the signals

generated by p sources x(t)=[x1(t),....,xp(t)]
T from the linear mixture signals,

e(t)=[e1(t),...,ep(t)]
T. The mixture  is characterized by an unknown  matrix A(t) such that:

e ( t ) ' A ( t ) x ( t ) (1) 

If the mixture is stationary, then A(t) = A. The goal is to estimate A(t) by means of

another matrix W(t) such that the output vector, s(t) is obtained as follows:

s ( t ) ' W
&1 ( t ) e ( t ) (2)

The output s coincides with the sources, x, except for a scale factor and a permutation:

W( t ) ' A ( t ) P D (3)

where P is any permutation matrix and D is any full-rank diagonal matrix.Many kinds

of approaches have been presented concerning the blind separation of sources, with

applications in real problems such as communications,  pattern recognition, data

visualization, speech processing and  biomedical signal analysis (EEG, MEG, fMRI,

etc), considering the hypothesis that the medium where the sources have been mixed is

linear, convolutive or non-linear. There are a great number of solutions for blind

separation of sources in several areas [1,2,6,7]. From geometric considerations, and for

linear mixtures, various algorithms have been presented, all of which find a matrix that

is similar to A by determining the slopes ofthe edges that are incident on any one of the

vertices of the hyperparallelepiped that contains the observation space [7], and for non-

linear mixtures [5] or for post-nonlinear mixtures [10]. In [8] an adaptive procedure is

described for the demixing of linear and non-linear mixtures of two signals with

probability distributions that are symmetric with respect to their centres., and non
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uniform, performing a fixed piecewise linearization in the case of nonlinear mixtures.

The approach presented in this paper combines the geometric properties of the

distributions, with the advantages of competitive neural networks, the main idea being

the use of a stochastic technique, simulated annealing, in order to provide fast initial

convergence.

2 Proposed method
We propose a method for blind separation of sources that combines adaptive processing

with a simulated annealing technique, and which is applied by normalizing the observed

space, e(t), in a set of concentric p-spheres in order to adaptively compute the slopes

corresponding to the independent axes of the mixture distributions by means of an array

of symmetrically distributed  neurons in each dimension (Figure 1). A preprocessing

stage to normalize the observed space is followed by the learning of the neurons, which

estimate the high density regions in a way similar, but not identical to that of self

organizing maps [3]. A stochastic method provides a fast initial movement of the weights

towards the independent components by generating random values of the weights and

minimizing an energy function, being this a way of improving the performance to speed

up the convergence of the algorithm. In general, the observation space (e1,..., ep) is

subsequently quantized in n spheres of dimension p (p-spheres), circles if p=2, each with

a radius Dk  (k=1...n) covering the points as follows:

D
k&1

< || e ( t ) || < D
k

D
0
'0 œk0{1,...,n} (4)

The number of p-spheres, n, provides the accuracy in the estimation of the independent

components. We use e(Dk ,t) to denote the vector e(t) that verifies (5).

2.1 Competitive Learning

The preprocessing is used to apply a competitive learning technique by means of a neural

network whose weights are initially located on the Cartesian edges of the p-dimensional

space such that the network has 2p neurons, and each neuron wi being identified with p

scalar weights (wi 1, wi 2 ,..., wi p) per p-sphere. The distance between a point, e(Dk ,t), and

the 2p neurons existing in the p-dimensional space (Figure 1) is:

d (i ,D
k
) ' || w

i
(D

k
, t )&e (D

k
, t ) || i0{1,...,2p} k0{1,...,n} (5)

A neuron, labelled i*, in a p-sphere D
k
 , is at a minimum distance from e(D

k
 ,t):

The main process for competitive learning when a neuron approaches the density region,

in a sphere D
k
 at time t, is given by a learning procedure that activates all the neurons:
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with "(t) and 0(t) being decreasing learning rates. After the learning process, the weights

are maintained in their respective p-spheres, D
k
, as follows:
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A matrix, W, similar to A, is needed (3), and a recursive neural network will uses a

continuous function of the scalar weights, as shown in equations  (11) and (21). A set,

S, of matrices can be defined as follows:

Ω ' W
ρ
1

, ... ,W
ρ
n

 (9)

where, for p dimensions, the matrices WD
k
  have the following form:

W
ρ
k

'

W
1 1 ρ

k

... W
1 p ρ

k

W
p 1 ρ

k

... W
p p ρ

k

k 0 {1,...,n}
         (10)

For linear systems or "symmetric" non-linear mixtures, the elements of  WD
k
 obtained

using competitive learning are considered to be the symmetric slopes, in the segment of

p-sphere radius D
k
, between two consecutive weights, for each dimension j, and finally

computed in (11) if the following transformation is carried out:
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Equation (11) can be simplified for linear media (n=1, D
0
 =0).

2.2 Simulated Annealing

Simulated annealing is a stochastic algorithm that represents a fast solution to some

combinatorial optimization problems. We first propose the use of stochastic learning,

such as simulated annealing, in order to find a fast convergence of the weights around

the maximum density points in the observation space e (t). For the problem of blind

separation of sources we define an energy, E, related to the four-order statistics of the

original p sources, as follows:

E 'j
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where cum22 (si (t), sj (t)) is the the 2x2 fourth-order cumulant of si (t) and sj (t), i.e.:
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and <x(t)> represents the expectation of x (t).The estimation of that energy can be done

using the methods described in [6]. The change in global energy, ÎE, is given by:

)E ' E ( t%1) & E ( t) (14)
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If ÎE
 

< 0 then the process accepts the change. If ÎE
 

> 0, the system accepts the change

providing P > r
 

, where r is a number randomly chosen for P, the Boltzmann distribution

given ÎE
 

, computed using the equation:

P ' e

&

) E

T ( t )
         (15)

where T(t) is the positive valued temperature at time t that regulates the search

granularity for the system´s global minimum. If ÎE
 

> 0 and P < r, then the network

returns all weights to their original state. The temperature T(t) is calculated,as:

T(t) '
T
0

1% 0 ( t )
         (16)

where T
0
 is the initial temperature. We propose the function 0(t) in (16) should be

0(t)=(1+t)2 -1, in order to provide fast convergence. With this process, and using ri j  to

denote a random number in the range [0,1] a separation matrix is computed as:

W
s

i j D
k

( t ) ' 2 r
i j
& 1 i , j0{1,...,p} i… j k0{1,...,n} (17)

The proposed energy function (15) depends on a four-order moment; it has been

experimentally corroborated in several simulations as an estimator of statistical

independence, obtaining good results by estimating statistics over N=100 samples.

Although the use of simulated annealing does not guarantee finding the global optima

with a few number of samples, it provides a good starting point for the next learning

process. 

2.3 Competitive Learning with Simulated Annealing

Now, a proposed adaptive rule of the weights is the following:   

W
i j D

k

( t%1) ' W
s

ij D
k

( t ) $ ( t ) % W
c

ij D
k

( t ) (1&$( t ) )

i… j0{1,...,p} k0{1,...,n}

(18)

where $(t) is a decreasing function, similar to (16). The purpose of equation (18) is to

provide a fast initial convergence of the weights by means of simulated annealing during

the epoch in which the adaptation of thenetwork by competitive learning is still inactive.

When the value $(t) goes to zero, the contribution of the simulated annealing vanishes,

and the more accurate estimation by means of competitive learning begins. The main

contribution of simulated annealing is the fast convergence compared to the adaptation

rule (7). However, the accuracy of the solution when the temperature, T(t), is low

depends mainly on the adaptation rule using competitive learning since the energy in (13)

continues to decrease until a global minimum is obtained. The use of different

approaches in order to estimate the centers of mass, as standard K-means does, is a

common practice in expectation maximisation fitting of Gaussians, but the complexity

of this procedure and the lack of knowledge of the centroids allows simulated annealing

more adecuate. A measure of the convergence with the number of samples is shown in

Figures 3 and 4, which compare competitive learning and simulated annealing, using the

root mean square error, ,(t), where the diagonal elements are the unity:
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The kurtosis parameter provides information concerning the distribution of, x(t), i.e.,

k
x
'

< x ( t ) 4 > & 3 < x ( t ) 2 > 2

< x ( t ) 2 > 2
(20)

where <x (t)> is the expectation of x (t). Figure 3 shows the root mean square error for

linear mixtures of p=2 signals and n=1, with the two sources having kurtosis of 6
s1

 =-

0.02 and 6
s2
 = 0.02, respectively, in several experiments. Using simulated annealing and

10000 samples the error remains at ,=0.05, whereas using simulated annealing and

competitive learning the error becomes ,=0.01 with the same number of iterations. In

Figure 4 the root mean square error in the case of p=3 and n=1 is shown, the sources

having kurtosis values of 6
s1
 =3.1, 6

s2
 = 3.5 and 6

s3
 = 3.2, respectively. With a larger

number of sources to be separated, using simulated annealing and 15000 samples the

error remains at ,=0.06, whereas using simulated annealing and competitive learning the

error becomes ,=0.01.

3 Separation matrix
We will use expression (11) for computation of the weights, although in the general non-

linear case above expression must be replaced by a similar one (Figure 2), as follows:

W
c

i j D
k

(t) '
w

>( j) i
(D

k
, t ) & w

>( j) i
(D

k&1
, t)

w
> ( j ) j

(D
k
, t ) & w

> ( j ) j
(D

k&1
, t )

i, j0{1..p} k0{1...n}

> ( j) 0 {> (1)<> (2)< ... <> (p) | d (> ( j) ,D
k
) < d (> (m) ,D

k
)} m 0{1...2p} m… j

(21)

Equation (21) means that the p-dimensional subspace associated to the neurons labelled

(>(1),..., >(p)) around point e
D
 provides the linear contour, between the radius D

k
 and D

k-1
,

where the mixture can be considered as linear. Then, we come up with this way to

recover the sources; the network uses the typical recursive recall, taking into account the

p-sphere quantization in the observation space and the matrix computed in (11) or (21):

s
i
( t%1) ' e

i
(D

k
, t ) & j

p

j'1

W
i j D

k

( t ) s
j
( t ) i0 {1,...,p} i… j k 0 {1, ... ,n} (22)

This expression is also used by the simulated annealing process in order to compute the

energy function in (12) and (13).

4 Simulation results

The crostalk parameter, cti , is used to verify the similarity between xi and  si,, as follows:

 
ct

i
' 10 log (

j
N

t'1

(s
i
(t)&x

i
(t)) 2

j
N

t'1

(s
i
(t)) 2

) i 0 {1,...,p} (23)

The simulation (Figures 5-8) concerns the separation of a mixture of two real signals.

The A matrix, and the WD
1
 matrix computed after 10000 samples were:
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A '

1 &0.8

0.8 1
W

D
1

'

1 &0.791

0.788 1
 (24)

The crosstalk parameter of the separated signals, s
1
(t) and s2(t), was ct1(t)=-24 dB and

ct2(t)=-23 dB, respectively. It has been verified that the greater the kurtosis of the signals

the more accurate and faster is the estimation, except for the case in which the signals

are not well conditioned or are affected by noise.

5 Conclusions

We have shown a new powerful adaptive-geometric method based on competitive

unsupervised learning and simulated annealing, in order to find the distribution axes of

the observed signals or independent components, by means of a piecewise linearization

in the mixture space, the use of simulated annealing in optimisation of a four-order

statistical criterion being an experimental advance. The use of new metaheuristics we

propose has benefits such as robustness against local minima, the parallel search for

various solutions, a high degree of flexibility in the evaluation function and provide a

good starting point. The algorithm, in its current form, presents some drawbacks

concerning the application of simulated annealing to a high number of signals, and the

complexity of the procedure O(2p p2 n) for the separation of nonlinear mixtures.
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