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Abstract

Hybrid HMM/MLP models are useful to model piecewise stationary non-linear
time series. A popular way to estimate the parameters of such models is to use the
E.M. algorithm thanks to the Baum and Welch, forward-backward, algorithm. In
this paper, we study a convenient way to estimate the parameters thanks to differen-
tial optimization. This new method can dramatically improve the time of calculus
for long time series.

1 Introduction

Hidden Markov models have been introduced by Baum and Petrie [1] to deal with
speech recognition. Decades later, Hamilton [3] applies generalization of this model to
the American’s GNP series. He uses indeed linear autoregressive models with Markov
switching. In a previous paper [8], we show that the generalization of the Hamilton’s
model with MLP as regression function gives a model with good segmentation proper-
ties on the laser time series. The main way to estimate the parameters of these models
is to use the Expectation-Maximization (E.M.) algorithm to find the maximum likeli-
hood estimator. However, E.M. algorithm is an iterative algorithm and each M-step
involves differential optimization of each MLP. These iterations inside other iterations
are very expensive in CPU time. In this paper we show that careful parameterization of
the model yields us a direct calculus of the derivative of the log-likelihood function (the
score function). We can then estimate the model with classical differential optimization
algorithms.

2 The model

Consider the process(Xt; Yt)t2Z, such that

1. (Xt)t2Z is a Markov chain in a finite state spaceE = fe1; :::; eNg, which can be
identified without loss of generality with the simplex ofRN , whereei are unit
vectors inRN , with unity as theith element and zeros elsewhere.

2. Given(Xt)t2Z, the process(Yt)t2Z is a sequence of non-linear autoregressive
model inRd and the distribution ofYn depends only onXn andYn�1; � � � ; Yn�p,
p 2 N

� .
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Hence, for a fixedt , the dynamic of the model is :

Yt+1 = FXt+1 (Y
t
t�p+1) +MXt+1"t+1

with FXt+1 2 fFe1 ; :::; FeN g non-linear functions represented by a MLP,MXt+1 2
fMe1 ; :::;MeN g invertible matrices and("t)t2N� a i.i.d sequence of Gaussian random
variables ofRd ,N (0; Id).

Write

aij = P (Xt+1 = ei jXt = ej ) andA = (aij) 2 R
N�N

and define :

Vt+1 := Xt+1 �E [Xt+1 jXt ] = Xt+1 �AXt:

With the previous notations, we obtain the general equations of the model, fort 2 N :�
Xt+1 = AXt + Vt+1

Yt+1 = FXt+1 (Y
t
t�p+1) +MXt+1"t+1

(1)

This notation is similar to the notation used in Elliott [2].

3 Parameters of the model

3.1 Parameters of the transition matrix A

We suppose in the sequel that each element ofA is strictly positive. The matrixA is
stochastic, so the sum of a column is1. There areN � 1 free parameters for each
column. Let�ij = ln

aij
aNj

, note that�Nj = 0; and(�1j ; � � � ; �N�1;j) 2 R
N�1 .

LetAj be thej-th column ofA :

Aj =

�
e�ij

1 + e�1j + � � �+ e�N�1j

�
1�i�N

It is easy to verify that the derivative ofA with respect to parameter(� ij) is :

@aij

@�ij
= aij(1� aij) (2)

and forl 6= i

@aij

@�lj
= �aijalj (3)

Moreover, ifk 6= j the derivative is null.
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3.2 Parameters of the covariance matrix �ei
:=Mei

M
T

ei

The covariance matrix�ei is supposed to be positive definite, so we estimate his inverse
��1ei . Note that this matrix is symmetric and we consider only the terms under the
diagonal (diagonal included).

3.3 Parameters of MLP

We denote(!ei)1�i�N the parameters of MLP associated with state(ei)1�i�N .

3.4 Notation of parameter vector of the model

The parameter� is

� = (!Tei ; � � � ; !
T
eN
; �11; � � � ; �(N�1)N ; (�

�1
e1

)11; � � � ; (�
�1
e1

)dd; � � � ; (�
�1
eN

)dd)
T

where(��1ei )lk is the coefficient ofl-th row andk-th (k � l) column of matrix��1ei .
!Tei is the weights vector of MLPFei written in row.

4 Estimation of the parameters

We use the maximum likelihood estimator (MLE). There are two way of writing the
likelihood, one has exponential complexity with respect to the observations (see Ra-
biner [7]), but we will use the second one which have only linear complexity with
respect to the observations (see Hamilton [3]).

4.1 Calculus of the log-likelihood

Let L�(y�p+1; � � � ; yn) be the log-likelihood of observations(y�p+1; � � � ; yn) , we
have

L�(y�p+1; :::; yn) = L�(yn jy�p+1; � � � ; yn�1 )�
n�1Y
t=1

L�(yt jy�p+1; � � � ; yt�1 )

=

NX
i=1

L�(yn jXn = ei; y�p+1; � � � ; yn�1 )P�(Xn = ei jy�p+1; � � � ; yn�1 )

�
n�1Y
t=1

L�(yt jy�p+1; � � � ; yt�1 )

Write in the sequel
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� p�n the vector withi-th component :p�n(i) = P�(Xn = ei jy�p+1; � � � ; yn�1 ),
p�n is known as the predictive filter ofXn.

� b�n the vector withi-th component :b�n(i) = L�(yn jXn = ei; y�p+1; � � � ; yn�1 ),
the conditional density ofyn knowingXn = ei and(y�p+1; � � � ; yn�1).

� B�
n = diag

�
b�n
�

the matrix withb�n for diagonal and zeros elsewhere.

The log-likelihood is then

ln(L�(y1; � � � ; yn)) =
nX
t=1

ln(b�t
T
p�t ) (4)

It is sufficient to calculatep�t for t = 1; � � � ; n, in order to calculate the log-
likelihood since :

b�t (i) = L�(yt jXt = ei; yt�1; � � � ; y�p+1 ) := �ei(yt � Fei(y
t�1
t�p+1))

where

�ei(yt � Fei (yt�1))

is the conditional Gaussian density ofyt knowingXt = ei.
By Holst et al. [4], the predictive filterp�t verifies the recurrence :

p�t+1 =
AB�

t p
�
t

b�t
T
p�t

(5)

We will suppose that the initial probability vectorp�1 is the uniform distribution onE
and we can recursively calculatep�t ; t = 1; � � �n.

4.2 Derivative of the log-likelihood

Let �j be thej-th component of�, we have :

@ ln(L�(y1; � � � ; yn))

@�j
=

nX
t=1

@b�t
T
p�t

@�j

b�t
T
p�t

with

@b�k
T
p�k

@�j
=

@b�k
@�j

T

p�k + b�k
T @p�k
@�j

(6)

After calculating the partial derivatives we obtain (see Rynkiewicz [9]):
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8>>>>>>>>>>><>>>>>>>>>>>:

@b�k
@�j

= 0 if �j is a parameter ofA
@b�k

@(��1ei )ll
= b�k(i)�

1
2

�
(�ei)ll �

�
(yk � Fei (y

k�1
k�p))(yk � Fei(y

k�1
k�p))

T
�
ll

�
@b�k

@(��1ei )l6=m
= b�k(i)�

�
(�ei)lm �

�
(yk � Fei(y

k�1
k�p))(yk � Fei(y

k�1
k�p))

T
�
lm

�
@b�k
@�j

= b�k(i)�
1
2

P
1�m;l�d(�

�1
ei

)lm

��
Fei(y

k�1
k�p)� yk

�
(l)

@Fei (y
k�1
k�p)(m)

@�j

+
�
Fei (y

k�1
k�p)� yk

�
(m)

@Fei (y
k�1
k�p)(l)

@�j

�
if �j is a element of!ei

and @p�k
@�j

verifies the recurrence, with@p
�
1

@�j
= 0 for all j. :

@p�k+1
@�j

=
Ab�k
b�
k
T
p�
k

�
I � p�kb

�
k
T

b�
k
T
p�
k

�
@p�k
@�j

+
�
@A
@�j

b�k +A
@b�k
@�j

�
p�k

b�
k
T
p�
k

�
Ab�kp

�
k

(b�k
T
p�k)

2

�
@b�k

T

@�j
p�k

�
Moreover, if�j is an element of!ei or��1ei

@B�
k

@�j
= diag(0; � � � ;

@b�k(i)

@�j
; � � � ; 0):

Finally (
@A
@�j

= C(�lm) if �j is a parameter ofA; �j = �lm
@A
@�j

= ON�N else

whereC(�lm) is defined by�
Cm(i) = �aimalm if i 6= l

Cm(i) = alm(1� alm) if i = l

5 Application : recursive estimation and performance
on simulations

5.1 Recursive estimation

Since we can write the log-likelihood and it’s derivative in a additive way, we can use
classical method of recursive (or on-line) estimation of our model.

A recursive estimator�n of the parameter based on the firstn observations of(y t)
can be written

�n+1 = �n + 
nHnhn+1
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where
n is a gain sequence verifying


n � 0;

1X
n=1


n =1;

1X
n=1


2n <1 (7)

and withhn the score vector such that thej-th component is

hn(j) =
@b�n

@�
j
n

T

p�n + b�n
T @p�n

@�
j
n

Note that the matrixHn is an approximation of the inverse of the Fisher information
matrix obtained by the Riccati lemma (see Rynkiewicz [9]).

The recursive estimation of such models is treated thanks an on-line E.M. algo-
rithm in Holst et al. [4], but their numerical study is made on a very simple models
(two regimes and two AR(1) for autoregressive models). Moreover, studies on classical
HMM models show than recursive E.M. does not seem to be aa efficient way to esti-
mate the parameters of HMM based models (see Krishnamurthy and Moore [5]). In the
sequel, E.M. algorithm refers always to the off-line algorithm.

5.2 Performance on simulation

We simulate a series with two MLP with 2 entries, one hidden layer with3 units (with
hyperbolic tangents as activation function) and2 output.

� The parameters for the two MLP are randomly chosen between�1 and1.

� The transition matrix is

A =

�
0:95 0:1
0:05 0:9

�
� The covariance matrices are

�1 =

�
0:29 0:34
0:34 1:48

�
et�2 =

�
1:09 0:33
0:33 0:1

�
First we simulate a series with1000 values. The CPU time for the estimation of param-
eter is obtained on a PC (400 MHz).

We randomly initialize 10 times each algorithm :

� E.M algorithm : The parameters are estimates with50 iterations of E.M. algo-
rithm and 10 iterations of BFGS optimization algorithm (see Press [6]) to opti-
mize the weights of each MLP in the M-step.

� Differential optimization : The parameters are estimates with 100 iterations of
BFGS.

� Recursive optimization : Since there are not enough data to ensure the conver-
gence of the algorithm, we made30 pass on the time series. The initial gain is
0.08 and the rule of decreasing is
n = 1

n1=2+1e�16
.
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The log-likelihood for the true parameter is -1.20, the final log-likelihood obtained for
each algorithm and each initialization is :

E.M algorithm Differential optimization Recursive optimization

�1:36805 �2:13761 �1:30815
�1:40708 �1:69924 �1:25308
�2:4903 �1:40469 �1:33211
�1:72062 �1:53105 �1:34769
�1:35515 �1:69533 �1:33211
�1:76341 �1:67276 �1:35613
�1:48806 �1:56657 �1:2944
�1:56468 �1:75466 �1:24691
�1:5589 �1:53692 �1:3545
�1:53337 �1:56613 �1:37256

CPU :1365 s. CPU :664.91 s. CPU :222 s.

The estimated covariance matrices for the best model are

b�1 =

�
0:27 0:32
0:32 1:49

�
andb�2 =

�
1:10 0:33
0:33 0:10

�
and the estimated transition matrix is

bA =

�
0:96 0:1
0:04 0:9

�
Note that both E.M. algorithm and differential optimization converge to a local maxi-
mum of the log-likelihood. There is no theoretical advantage to use one or another for
reaching some better maxima. However the recursive estimation is, according a lot of
empirical studies, more robust to achieve a good maximum.

We simulate now a long series (30000 values), we test only the recursive algorithm,
because the other are too slow and will need many hours to converge.

The log-likelihood for the true parameter is : -1.18

Final log-likelihood

�1:20364
�1:19179
�1:20097
�1:22429
�1:20561
�1:18873
�1:22802
�1:29867
�1:2385
�1:18573

CPU : 248 s.
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The estimated covariance matrix for best model are

b�1 =

�
0:29 0:35
0:35 1:51

�
andb�2 =

�
1:10 0:33
0:33 0:10

�
and the estimated covariance matrix is

bA =

�
0:95 0:1
0:05 0:9

�

6 Conclusion

If we use the prediction filter of the state, the calculus of the log-likelihood of the
Hybrid model has a linear complexity with respect to the observations. Moreover, if the
model is parameterized with care, the calculus of the derivative of the log-likelihood is
easy and we can use direct differential optimization to find the MLE. Finally, recursive
algorithm deduced from this calculus yields us a very efficient method to estimate such
models on long times series.
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