
More on stationnary points in

Independent Component Analysis

Vincent Vigneron1 Ludovic Aubry 2

1MATISSE-SAMOS UMR 8595 2CEMIF
90, rue de Tolbiac 40 rue du Pelvoux

75634 Paris cedex 13 91020 Evry Courcouronnes

Abstract. In this paper, we will focus on the problem of blind source
separation for independent and identically distributed variables (iid). The
problem may be stated as follows: we observe a linear (unknown) mixture
of k iid variables (the sources), and we want to recover either the sources
or the linear mapping. We give online stability conditions of the algo-
rithm using the eigenvalues of the hessian matrix of the pseudo-likelihood
matching our set of observations.

1 Introduction

The process of discovering the linear mapping is called Blind Source Separation
(BSS), because we don't want to make any asumption on the distribution of
the sources, except that they are mutually independent. A review of several
methods recovering the mapping can be found in [2]. Tee-Wong Lee shows that
many of these methods are<equivalent to �nding the maximum of entropy of
the observations assuming a given distribution of the sources [6]. Cardoso &
Amari show that the mixture can be recovered even with wrong assumptions
on the distributions, provided they satisfy a few stability conditions.

We consider the case where we observe a d-dimensional random vector X .
The vector X is obtained from a linear (non-random) mapping of a source
variable S. Thus we have X(t) = AS(t) for all of our observations. Let
S(t) = [s1(t); : : : ; sd(t)] be the sources such that for each instant t, the source
si(t) has the probability density fuction (pdf) pi (independent of t). With
the (only) assumption that S has independent components, its joint pdf is

p =
Qd

i=1 pi.
Let observe n realisations x(t) of the variables X such that x(t) = A � s(t); for
t = 1; : : : ; n and an unknown d�d matrix A1. Further, we will propose a model
distribution for S, noted g =

Qd
i=1 gi. Several papers from Comon [5], Cardoso

1If we assume there is as much sources as captors.
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[3], Amari [1] show that it is possible to recover a satisfying estimation of the
matrix A�1 even when g is di�erent from p, under certain conditions (such as
gi being sub-gaussian if pi is).
In order to obtain an estimator of A, we have to minimize a given criterion,
most of them are based on entropy and mutual information. Typically we woud
minimize the criterion H(BX), or E [log g(BX)] with respect to B. The best
choice here would be to take for g the distribution of the sources2. Such a
criterion is minimal when each coordinate of the vector BX are independent
and the distribution of G(BX) is uniform (G is the cumulative density function
of g).
Works from Cardoso [3] and Cardoso & Amari [4] give conditions on g and p so
that the minimisation algorithm is stable. The conditions show that a broad
range of function g can be used.

2 Maximum likelihood

Let us de�ne a likelihood function, matching our set of observations: let
f
;A; (GB)B2GLd(R)g be a statistical model of the sources s. In our case, we
don't know the true distribution P (P (ds) = p(s)ds) of the sources s, and we
don't assume that P belongs to our parametric model (GB)B2GLd(R). That is
we are not doing maximum likelihood estimation. Nevertheless, we will de�ne
a pseudo log-likelihood with:

Un(B) = �
1

n

nX
i=1

log(j detBjg(BXi));

where the variables (Xi)i=1;:::;n are the observations, and g(y) =
Qd

k=1 gk(xk),
is the density of GB(dx) = j detBjg(Bx)dx. This sequence of functions of the
observations is called a contrast processus if it veri�es some simple properties.
The main condition is that it converge in probability toward a contrast function
whose minimum is our solution. In fact, the requirement on Un(B) is a bit
broader, because as we will see later, we only need that its gradient cancels at
the solution point in order to de�ne a sequence of estimators of A�1.

Lemma 1 if E [j log(j detBjg(BX))j] < 1, we have the convergence in prob-
ability P of :

lim
n!1

Un(B) = �E [log(j detBjg(BX))]

= �

Z
log(j detBjg(BAS))p(s)ds

� C(B;A�1)

= K(gBAkp) +H(p) + log j detBj: (1)

2Recently, quasi-optimal methods with online estimation of pdf's and of score functions

have been published.

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 39-44



C(B;A�1) is called a contrast function if B ! C(B;A�1) has a strict mini-
mum at the point B = A�1. The processus Un(B) is called a contrast processus,
and B̂n = infB Un(B) is called the contrast estimate.
From inequality (1), it is clear that C(B;A�1) � H(p)+ log j detBj with equal-
ity only if the distributions gBA and p are the same. Yet, we have g 6= p and
we need to prove that B = �A�1, where � is the product of a scale matrix and
a permutation matrix, is a minimum.
There is no general conditions ensuring that

E [j log(j detBjg(BX))j] <1;

but we can enumerate several necessary conditions.

We show that the function C(B;A�1) has several minima of the form �A�1.

3 Stationnary points

We call stationnary points, the matrices of GLd(R), such that dUn(B) = 0.
Those points are good candidates for maxima and minima of our contrast
function. Furthermore, we show that there exists such points that are always
solutions to our problems.
Let's compute the total di�erential of our contrast process with respect to the
inverse mixing matrix B:

Un(B) = �
1

n

nX
i=1

log(j detBg(BXi))

then

dUn(B) = �Trace(dB � B�1)�
1

n

nX
i=1

�T (BXi)d(BXi)

with �(x1; : : : ; xd) � �
h
g0(x1)
g(x1)

; : : : ;
g0(xd)
g(xd)

iT
.

Remark 1 If we de�ne the mapping dW as dW = dB �B�1, and Yi = BXi,
we have

dUn(B) = �Trace(dW )� 1
n

Pn
i=1 �

T (Yi)dBB
�1Xi

= �Trace(dW )� 1
n

Pn
i=1 �

T (Yi)dWYi:

This mapping does not correspond to a change of variable, although it represents
a local change of coordinate. As the only points of interest for us are those of
the form �A�1, we will see that with the change of parameters W = BA�1,
the hessian matrix has a block diagonal form at each stationnary points.

From the di�erential of dUn we have :

@Un(B)

@B
= �B�T �

1

n

nX
i=1

�(BXi)X
T
i :
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Let us de�ne B̂n as a solution of B̂�Tn + 1
n

Pn
i=1 �(B̂nXi)X

T
i = 0 or Id +

1
n

Pn
i=1 �(B̂nXi)(B̂nXi)

T = 0. In order C to be a contrast function (according
to Comon's de�nition [5]), it must verify :

rBC(B;A
�1) = 0 , E [�rln (B)]B

T = 0
, Id + E [�(BX)(BX)T ] = 0

for matrices of the form �A�1 where � is the product of a diagonal (scaling)
matrix and a permutation (Æi;�(j)). This is equivariant property as introduced
by Comon [5]: we only need (and can) recover the mixing matrix up to a per-
mutation, thus we only require unicity of the minima up to a permutation and
scaling of the matrix A.

Let the set of �i;j be solutions of the integral equations 1+E [�i (�i;jsj)�i;jsj ] =
0. For any permutation � of f1; : : : ; dg, we de�ne �� the matrix whose com-
ponents are �i;�(i)Æ�(i);j . Let B� = ��A

�1, then:

Id + E [�(B�X)(B�X)T ] = Id + E [�(��S)(��S)
T ]

that is for each element (i; j) we have Æi;j + E [�j (��S)(�S)
T
j ] = 0. The left

member of the equation:

Di;j =

�
0 if i 6= j

1 + E [�i (�i;�(i)s�(i))�j;�(j)s�(j)] = 0 if i = j

We yet have to prove the existence of such solutions (or some conditions on
the distributions p and g) and the uniqueness.

3.1 Stability conditions

We just showed B� is a good candidate for a local minimum, we need to prove
that the hessian matrix E [�r2 ln(B�)] is positive de�nite. This may not always
be the case, however. Amari et al. [1] proposed a modi�cation of the algorithm
so that the hessian becomes positive de�nite. Let us �rst examine the one-
dimensional case for which

@Un(B)

@B
= �B�T �

1

n

nX
i=1

�(BXi)Xi:

and

@2Un(B)

@B2
=

1

B2
�

1

n

nX
i=1

B�0(BXi)X
2
i :

For such stability at point B� such that 1
B
+ E [�(BX)X ] = 0, we need that

1
B2 � [B�0(BXi)X

2
i ] � 0.



3.2 Hessian matrix form

Noting that
@b�T

k`

@bij
= �b�1jk b

�1
`i , we can compute the Hessian as follows:

Hijk`(B) = @2Un(B)
@bij@bk`

= � @
@bij

�
b�1k` + 1

n

Pn
r=1 �k(BX

r)Xr
`

�
= b�1`i b

�1
jk �

1
n

Pn
r=1 �

0(BXr)Xr
`X

r
j Æik:

B� is a strict minimum of C(B;A�1) i� E [H(B)] is positive de�nite, i.e.

E [Hijk` (B)] = (A��1)`i(A�
�1)jk � E [�0k (�S)X`Xj ]Æik

Assuming � is a diagonal matrix (� is solution of Id + E [�(�S)(�S)T ] = 0):

E [Hijk` (B)] = a`iajk
1

�i�k
�
X
p

a`pajpE [�
0

k (�ksk)s
2
p]Æik

Because p 6= q implies E [�0k (�ksk)spsq ] = 0. We note that if Q(B) =
P

ijk` bij

bk`Hijk` is a positive de�nite quadratic form, so W ! Q(WA�1), which can
also be writtenQ(WA�1) =

P
ijk`

P
pq wipwkqa

�1
pj a

�1
q` Hijk` =

P
ipkq wipwkqUipkq ,

with Uipkq =
P

j` a
�1
pj a

�1
q` Hijk`.

So it is equivalent to prove thatP
k;` a

�1
uj a

�1
v` E [Hijk` (�A

�1)] =
P

j;` a
�1
uj a

�1
v` a`iajk

1
�i�k

�

�
P

j;` a
�1
uj a

�1
v` a`pajpE [�

0

k (�ksk)s
2
p]Æik ;

Uijk` = ÆjkÆi`
1

�i�j
� E [�0k (�ksk)s

2
j ]Æj`Æik

is positive de�nite. If we rewrite the matricesMij as the vector � = [M12;M21;

: : : ;Mij ;Mji; : : : ;Mdd]
T , hence the transformed hessian Uijk` has a matrix form

as Uijk` = ÆjkÆi`
1

�i�k
� E [�0i (�isi)s

2
j ]Æj`Æik

U =

2
6666666664

. . .

Uijij Ujiij 0
Uijji Ujiji

. . . 0
0 Uiiii

0
. . .

3
7777777775

which leads to de�ne for all i < j:

Uij =

�
�ij �ij
�ij �ij

�

Ui = Uiiii = �ij + �ij :

if �ij = �E [�0i (�isi)s
2
j ]; �ij =

1
�i�j

. The simpli�ed solution where �i = 1 is

Uij =

�
�E [�0i (si)]E [s

2
j ] 1

1 �E [�0j (sj)]E [s
2
i ]

�

Ui = 1� E [�0i (si)s
2
i ]
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From the two equations (3.2) and (3.2), we can now give the stability con-
ditions, that is Ui < 0 and the eigenvalues of Uij < 0. The eigenvalues of Uij

are the solutions of
(�ij � x)(�ji � x) � �2ij = 0;

i.e.

x1;2 =
1

2

�
�ij + �ji �

q
(�ij + �ji)2 � 4�2ij

�
:

We need that Re(x1) < 0 and Re(x2) < 0. In our case, x1 and x2 are real
numbers because Uij is symetric. Thus, since x1 > x2,

x1 < 0 , �(�ij + �ji) >
q
(�ij � �ji)2 + 4�2ij > 0

, (�ij + �ji)
2 > (�ij � �ji)

2 + 4�2ij
, ��ij�ji > �2ij
and

E
�
�0i(�isi)(�jsj)

2 ]E [ �0j(�jsj)(�isi)
2
�
> 1

4 Conclusion

This last formula allows us to check the stability conditions online, by estimat-
ing the values E [�0i (�isi)] and E [(�j sj)

2] with respectively 1
n

Pn
k=1 �

0

i(B̂nXk)

and 1
n

Pn
k=1 �

0

i(B̂nXk)
2.
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