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Abstract 
In this article, a real-coded genetic algorithm (GA) is proposed capable of 
simultaneously optimizing the structure of a system (number of inputs, 
membership functions and rules) and tuning the parameters that define the 
fuzzy system. A multideme GA system is used in which various fuzzy systems 
with different numbers of input variables and with different structures are 
jointly optimized. Communication between the different demes is established by 
the migration of individuals presenting a difference in the dimensionality of the 
input space of a particular variable. We also propose coding by means of 
multidimensional matrices of the fuzzy rules such that the neighborhood 
properties are not destroyed by forcing it into a linear chromosome. The 
effectiveness of the proposed approach is verified and is compared with other 
fuzzy, and neuro-fuzzy approaches in terms of the root mean squared error 
(RMSE). 

I. GENETIC ALGORITHMS AND FUZZY SYSTEM 
Since the introduction of the basic methods of fuzzy reasoning by Zadeh and the success 
of their first application to fuzzy control, fuzzy logic has been widely studied [5][7] and 
[11]. However, certain important problems still remain, including: 1) the selection of the 
fuzzy rule base; 2) the subjective definitions of the membership functions; 3) the 
selection of the variables of the system. The design of a fuzzy system involves the 
structure of the rules of the system, and the membership function parameters. GAs have 
the potential to be used to evolve both the fuzzy rules and the corresponding fuzzy set 
parameters [9]. Some of the work of fuzzy systems and GAs concentrates exclusively 
on tuning of membership functions [6] or on the selecting an optimal set of fuzzy 
rules [8], while others attempt to derive rules and membership functions together [2]. 
To obtain optimal rule sets and optimal sets of membership functions, it is preferable 
that both are acquired simultaneously [4]. To optimize the whole fuzzy system 
simultaneously, two structures will be used: one to encode the membership functions 
and the other for the fuzzy rules. 
A. Membership function coding 
The membership functions are encoded within an "incomplete" matrix in which each 
row represents one of the variables of the system, and where the columns encode the 
parameters of the membership functions (Fig.1). Because each of the input variables 
of the system has a different number of membership functions, the chromosome 
structure used to store the membership functions is not a "complete" matrix, as each 
of the m rows has a different number of columns nm. As we have selected a triangular 
partition (TP), the only parameter that needs to be stored is the centre of the function 
[12].  
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B. Fuzzy rules codification 
To encode fuzzy rules, rather than a string or vector where the numerical consequents 
of the conclusions will appear, we carried out spatial encoding in the form of a n1 x...x 
nn matrix, noting that nm is the number of membership functions contained within 
each input variable. By using string linear encoding, rules that are close together 
within the antecedent and which, when fuzzy inference is performed are activated 
simultaneously, can be distantly encoded. Thus, in a planar structure, the 
neighborhood properties are destroyed when it is forced into a linear chromosome. In 
the behaviour of GAs, it is preferable for fuzzy rules that are similar in the antecedent 
to be encoded as neighbors. Therefore, and as is implicit in encoding, rules that are 
neighbors in the rule table create interference with each other. Fig.1 shows the 
complete fuzzy systems codification. Note that the genetic operators described in the 
following section take into account the spatial structure of the fuzzy rules. 
C. Fitness function 
To evaluate the fuzzy system obtained, we have used the error approximation criterion, 
but to take into account the parsimony principle, that is, the number of parameters to be 
optimized in the system, we add a new term to describe the complexity of the derived 
fuzzy system.  In the approach presented, GAs are used to search for an optimized 
subset of rules (both number of rules and the rule values) from a given knowledge 
base to achieve the goal of minimizing the number of rules used while maintaining 
the system performance.  If we have various models based on the same set of  
examples, the most appropriate one is determined as that with the lowest description 
length. Another more flexible alternative is to define the fitness function as a linear 
combination of the error committed by the system and the number of parameters 
defining [3]: 

ComplexityWErrorWfitness CE ⋅+⋅=  (1) 

II. MULTIPLE-DEME GAS 
The theme of this article is that different structures of fuzzy systems may evolve and 
compete with each other, in such a way that even information obtained by fuzzy 
systems with different numbers of input variables may be shared. In general, for 
identification purposes, no a priori information  about the structure of the fuzzy 
system is always obtained. Even the number of inputs (for example, in time-series 
prediction problems) is not always known. For this purpose, a multiple-population (or 
multiple-deme) GA configuration is used [1], in which each deme has a different 
number of input variables; within each deme there are fuzzy systems with different 
numbers of membership functions and rules. Basically, the configuration consists of 
the existence of several sub-populations which occasionally exchange individuals. 
Therefore it is necessary for there to exist intercommunication between the various 
demes that comprise the total genetic population. This exchange of individuals is 
called migration and is controlled by several parameters.  
A. Migration between neighbour demes 
In this paper, two different situations of migration between demes are considered: the 
migration towards demes with a lower dimensionality and that towards those with a 
higher dimensionality. Fig.2 illustrates the case in which the exchange of individuals 
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between demes only occurs between near neighbours, which is equivalent to say that 
the exchange occurs between fuzzy systems that differ by one in their input space 
dimensionality. The migration of a fuzzy system with a particular number of input 
variables towards a system with a lower dimensionality requires the previous, and 
random, selection of the variable to be suppressed (we term this variable m). The 
second step is then to determine, again in random fashion, one of the membership 
functions of this variable (termed j) and to construct the new, lower dimensionality, 
fuzzy system that only has the rules corresponding to the membership function j that 
has been selected (Fig.3). Thus the set of membership functions of the new fuzzy 
system is identical to that of the donor system, except that the variable m has been 
removed. The rules are determined by the following expression: 

[ ]m...,ij,i,...iii...,i,i...,iii
n1,j ;RR

N1m1-m21N1m1-m21
∈=

++

Offpring  (2) 

In the second case, the new fuzzy system (the new offspring) proceeds from a donor 
fuzzy system with a lower number of input variables (Fig.4). Here, it is not necessary 
to determine any donor system input variable, as in the migration described above, 
because the new offspring is created on the basis of the information obtained from the 
donor system, with the increase of a new variable; which is randomly selected from 
the set of variables in the higher dimensionality deme that are different to the deme 
with lower dimensionality. This new variable initially has a random number of 
homogeneously distributed membership functions, and its rules are an extension of 
the donor fuzzy system, taking the form: 
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III.  GENETIC OPERATORS. 
To perform the crossover of the individuals within the same subsystem, we 
distinguish between the crossover of the membership functions and that of the rules. 
A. Crossover of the membership functions. 
When two individuals have been selected (which could be termed, i and i') within the 
same subsystem in order to perform the crossover of the membership functions, the 
following steps are taken: 
1.-One of the input variables of the system (for example, m) is randomly selected. 
2.-Let i

mn and 'i
mn  be the number of membership functions of system i and i' for the 

randomly selected variable m. Assume that i
mn # 'i

mn . Then from system i we randomly 

select two crossover points, p1 and p2, such that: 1#p1#p2# i
mn . The membership 

functions that belong to the interval [p1,p2] of individual i are exchanged for the 
membership functions of individual i' that occupy the same position.  
B. Crossover of the rules. 
To achieve the crossover of the consequents of the membership functions, we 
substitute N-dimensional submatrices within the two individuals selected to carry out 
the operation. One of the individuals is termed the receptor, R, whose matrix is to be 
modified, and the other is the donor, D, which will provide a randomly selected 
submatrix of itself. The crossover operation consists of selecting a submatrix S from 
the rule matrix of the donor individual such that a matrix S* of equal dimensions and 
located at the same place within the receptor individual is replaced by the new rules 
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specified by matrix S. In other words, the new offspring O is equal to R except in the 
submatrix of the rules given by matrix S, located at the point vector (A1, A'1, A2,...,AN). 
Therefore, the following steps are taken: 
1.- Select two individuals R and D 
2.- In order to perform the (N+1) points crossover operator, select a vector 

(A1,A'1, A2,...,AN), such as the submatrices S and S* fulfill S⊂ R and S*⊂ D. 
3.-  Create an offspring  interchanging the submatrices S and S* in R. 
C. Mutation  
In mutation, the parameters of the fuzzy system are altered in a different way from 
what occurs within a binary-coded system. As the individual is not represented by 
binary numbers, the random alteration of some of the system’s bits does not occur. 
Instead of this, there are perturbations of the parameters that define the fuzzy system. 
Firstly, when the fuzzy system that will be mutated has been selected, a parameter 
defining the fuzzy system (membership functions or rules) is randomly selected with 
a probability of Pm. Secondly, the parameter is modified according to the following 
expression: 

),(RR
)c,c(cc

N21N21 ...iii...iii
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m

1-j
m

j
m

j
m
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random
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where the values that perturb the membership functions are given by 
b
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+
+ . The active radius ‘b’ is the maximum variation distance and is used 

to guarantee that the order of the membership function locations remains unchanged (a 
typical value is b=2, meaning that, at most, a centre can be moved as far as the midpoint 
between it and its neighbour). The parameter R∆ is the maximum variation of the 
conclusion of the rules.  
IV. SIMULATION RESULTS 
A two-variable target function was selected to demonstrate the ability of the proposed 
algorithms to construct approximations to highly non-linear target functions. We have 
selected the function presented in [10] where a perturbation has been added by means 
of a second variable  X2: 

)cos(2.0)()exp(3),( 21
2
121 XXsinXXXF +⋅−⋅= π  (4) 

Nmax is two. If the number of membership functions of the input variables is small, only 
the most important features of the output can be expressed in the fuzzy rules, since small 
local disturbances of the output would demand a greater partition of the input subspace. It 
is even possible that if the perturbation of an input variable on the output is small then 
such a variable might be removed or considered as noise.  In this GAs, the system 
with the best fitness is the one that has a single input variable, the variable X1, and 8 
membership functions. The approximation error (RMSE) obtained with this structure 
is 0.0268. Fig 5.a and Fig.5.b present the original and the obtained approximation 
with 8 fuzzy rules. Table  1 compares the results obtained with our algorithm and 
those obtained with [10]. 
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V. CONCLUSIONS 

The design problems in modeling a fuzzy system  are structure identification and 
parameter tuning. The decision for the former task is usually based on the behavioral 
knowledge of an expert. Therefore, the final fuzzy system obtained from this ad hoc 
approach is sometimes far from the optimum. While the bibliography describes many 
methods that have been developed for the adjustment or fine tuning of the parameters 
of a fuzzy system with partially or totally known structures, few have been dedicated 
to achieving both simultaneous and joint structure and parameter adjustment. The 
goal of this paper is to find a design method of optimal fuzzy system modeling that 
takes both tasks into account  simultaneously and without the help of experts in the 
domain. 
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Different Algorithms Nº Rules MSE Max. Error 
P1/γ1 0.0114 0.354 
P1/γ2 0.0078 0.353 
P2/γ1 0.0071 0.278 
P2/γ2 0.0068 0.278 
P3/γ1 0.0081 0.388 

J.H.Nie  
& 
 T.H.Lee [10] 

P3/γ2 

30 

0.0080 0.388 
Our Approach 8 0.0060 0.2195 
Table  1: Comparison of the proposed algorithm with other fuzzy methods for direct 
synthesis of fuzzy systems 
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Fig.2 A schematic of multideme GA, in which 
the exchange of  individual between demes 
only occurs between near neigbours 
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Fig.3 Migration towards a fuzzy system with a 
lower dimensionality (2 input variables 
towards 1 input 
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Fig.4 Migration towards a fuzzy system with a 
higher dimensionality (1 input variable 
towards 2 inputs) 

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−3

−2

−1

0

1

2

3

VARIABLE X2

ORIGINAL OUTPUT SURFACE

VARIABLE X1 −3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−3

−2

−1

0

1

2

3

VARIABLE X2

OUTPUT SURFACE OBTAINED WITH 8 RULES

VARIABLE X1  
Fig.5 (a) Original output surface b) Output surface obtained by the proposed algorithm with 8 
rules  
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