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Abstract. We treat the Bayesian decision problem, mainly the two-

category case. A three layered neural network, having a logistic output

unit and a small number of hidden layer units, can approximate the

a posteriori probability in L
2-norm, without knowing the type of the

probability distribution before learning, if the log ratio of the a posteriori

probabilities is a polynomial of low degree as in the case of most familiar

probability distributions. This is because the log ratio itself can be well

approximated by a linear sum of outputs of the hidden layer units in

L
2-norm.

1. Introduction

In the case of the two-category Bayesian classi�cation, the log ratio g of the
a posteriori probabilities (probability densities)

g(x) = logP (!1jx)� logP (!2jx) (1)

and its monotone functions can be used as Bayesian discriminant functions
[1]. Recently Funahashi (1998) has treated a special case of the two-category
classi�cation that the state-conditioned probabilities are normal. He proved
that a three layered neural network having an output unit with the logistic
activation function � and at least 2d hidden layer units can approximate the
contraction �(g) of the log ratio g in L2-norm, showing that �(g) = P (!1jx).
Since � is monotone increasing, �(g) can be sued as a Bayesian discriminant
function.
In this paper, we prove that, in the case where the log ratio g of the a

posteriori probabilities is linear (resp. linear or quadratic), the network having
two (resp. d + 1) hidden layer units can approximately realize the Bayesian
discriminant function, g or �(g), for the two-category classi�cation. Hence,
the number 2d obtained by Funahashi is decreased to d + 1. Moreover, the
Bayesian discriminant function g itself can be approximated in the L2-norm in
our theorem. If the learning is not trapped at a local minimum, the network
can realize the approximation without knowing the type of the probability
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distribution. The tools are an approximation theorem in [3] and the result in
[4]. We also discuss on the extension of our result to multicategory cases.

2. Bayesian decision theory and neural networks

The basic notation in this paper follows [1]. We use a three layered neural
network having c output units and N hidden layer units, denoting the outputs
by Fw(!ijx). We expect that Fw(!ijx) approximate the a posteriori probabili-
ties P (!ijx) respectively. Let ' and � be the activation functions of the output
and the hidden layer units. Then,

Fw(!ijx) = '(
NX
j=1

cij�(wij � x+ tij) + ti0); i = 1; :::; c; (2)

where w is the connection weight and !i stand for the categories.
We summarize here the results described in [2] and [4], which are ingredients

of this paper.

2.1 Theory by Ruck et al.

Let (x; !) 2 Rd � 
, 
 = f!1; :::; !cg be teacher signals and let �i(!) = 1
for ! = !i and �i(!) = 0 for ! 6= !i. Then, the mean square deviation of the
outputs from �i(!) is

E(w) =

Z
Rn

cX
i=1

cX
j=1

(Fw(!ijx)� �i(!j))
2p(!jjx)p(x)dx

=

Z
Rn

cX
i=1

�
((Fw(!ijx)� 1))2p(!ijx) + F (!ix)

2(1� p(!ijx))
	
p(x)dx

= e2(w) +

Z
Rn

cX
i=1

P (!ijx)(1� P (!ijx))p(x)dx; (3)

where

e2(w) =

Z
Rn

cX
i=1

((Fw(!ijx)� P (!ijx))
2p(x)dx

[4]. Since the second term on the most right hand side of (3) is independent of
w, minimization of E(w) by modifying w implies that of the �rst term.
Let f(x(j); !(j))g1j=1 be a sequence of independent teacher signals with prob-

ability distribution p(x; !). Then,

E(n)(w) =
1

n

nX
j=1

cX
i=1

(Fw(!ijx
(j))� �i(!

(j)))2 (4)

converges to E(w) almost everywhere. If the gradient descent method is com-
bined with (4), the outputs Fw(n)(!ijx) of the network may converge to P (!ijx)
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respectively in the sense of L2(Rd; p), where w(n) is the weight vector at the
n-th step.

2.2 Funahashi's network

This result was applied by Funahashi to the case where c = 2 and p(x;wi),
i = 1; 2, are normal ditributions [2]. In this case the decision function (1) is
a quadratic form. His network has an output unit with the logistic activation
function �(t) = (1+e�t)�1 and hidden layer units with a sigmoidalC2-function
� as the activation function.
Noting that t2 can be uniformly approximated by a linear sum of the formP2
i=1 ci�(Æt+ ti)+ t0 on any �nite interval, he used a linear sum

P2d
i=1 ci�(wi �

x+ ti)+ t0 to approximate a quadratic form. Since �(wi �x+ ti) can be outputs
of the hidden layer units, the output of the network is

�(�g(x)) = �(
2dX
i=1

ci�(wi � x+ ti) + t0):

If g is the discriminant function de�ned by (1), �(g(x)) = p(!1jx). Since �

is monotone increasing, �(g(x)) is also a discriminant function. Since � is a
contraction, the uniform approximation of g by �g on any compact set K implies
approximation of �(g) by �(�g) in L2(Rd; p):

R
j�(g(x)) � �(�g(x))j2p(x)dx �R

K
jg(x)� �g(x)j2p(x)dx+

R
Kc p(x)dx � 2".

3. Main Theorem

In this section, we prove that the log ratio g itself de�ned by (1) can be
approximated in L2(Rd; p). If g is linear the number of the hidden layer units
can be only 2, and if g is a quadratic form the number can be as small as d+1.
The class of activation functions is suÆciently wide. For simplicity, we suppose
that the probability distribution is continuous.

3.1. Approximation on R

The lemma below is a special case of the theorem obtained in [3].

Lemma 1. Let p be a probability measure on R such that t 2 L2(R; p) and
let h 2 Rd. If h(i) is bounded for i = 0; � � � ; k, then, for any " > 0, there is a
constant Æ for which

kh0(0)
di

dti
t �

di

dti
1

Æ
(h(Æt) � h(0))kLp(R;p) < " (5)

holds for i = 0; � � � ; k.
Furthermore, if t2 2 L2(R; p), then, for any " > 0, there is a constant Æ for

which both (5) and

k
1

2!
h00(0)

di

dti
t2 �

di

dti
1

Æ2
(h(Æt) � Æh0(0)t� h(0))kLp(R;p) < " (6)

hold for i = 0; � � � ; k.
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Proof. We describe the proof of the latter half. Applying Maclaurin's theorem
to h(Æt), we have that

1

2!
h00(0)t2 �

1

Æ2
(h(Æt)� Æh0(0)t � h(0)) =

1

2!
(h00(0)� h00(�Æt))t2

for i = 0. By assumption, there is M > 0 for which the right hand side is
bounded by Mt2. Since t2 2 L2(R; p), there is a �nite
interval I such thatZ

Ic

j
1

2!
(h00(0)� h00(�Æt))j2t4dp(t) <

Z
Ic

M2t4dp(t) <
"

2
:

For the I, there is Æ > 0 for which
Z
I

j
1

2!
(h00(0)� h00(�Æt))j2t4dp(t) <

"

2

as g00 is continuous. Hence, we obtain that
Z
j
1

2!
(h00(0)� h00(�Æt))j2t4dp(t) =

Z
I

+

Z
Ic

<
"

2
+
"

2
= ":

We have that, for i = 1,

h00(0)t�
1

Æ
(h0(Æt)� h0(0)) = (h00(0)� h00(�Æt))t =Mt;

and, for i = 2, h00(0)� h00(Æt) < M. Hence, similarly to the case i
= 0, we obtain (6) for i = 1, 2. For i > 2, we have that

j
1

2!
h00(0)

di

dti
t2 �

di

dti
1

Æ2
(h(Æt)� Æh0(0)t� g(0))j = jÆi�2h(i)(Æt)j < Æi�2M:

The proof of (5) is similar and easier.

3.2. Approximation of the discriminant function

Let p be a probability measure de�ned on Rd and let Lw = ftwj � 1 <

t <1g for w 2 Sd�1, where Sd�1 is the unit sphere in Rd. Denote by pw the
projection of p onto Lw. A function f such that h(x) = h(w � x) is called a
plane wave in the direction of w 2 Sd�1. For the h,

Z
h(x)dp(x) =

Z
h(x)dpw(x) =

Z
h(w � x)dpw(x):

The most right hand side of this equation can be regarded as an integral over
the line Lw. Hence, we can apply Lemma 1 to h(w � x).
We denote by Q1 a linear function in x and by Q2 a nonhomogeneous

quadratic form.

Theorem 2. Let h 2 C1(R) be a bounded nonconstant function, let p be
a probability measure on Rd and let Q1 be a linear function in x 2 Rd. If
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Q1 2 L2(Rd; p), then, for any " > 0, there are coeÆcients ai, vectors wi 2 Sd�1

and constants ti, i = 1,2, such that

k �Q1 �Q1kL2(Rd;p) < "; (7)

where

�Q1(x) =
2X

i=1

aih(wi � x+ ti) + t0: (8)

Let g 2 C2(R) be a bounded nonconstant function, let p be a probability mea-
sure on Rd and let Q2 be a quadratic form de�ned on Rd. If Q2 2 L2(Rd; p),
then, for any " > 0, there are coeÆcients ai, vectors wi 2 Sd�1, i = 1; � � � ; d+1,
and constants ti, i = 1; � � � ; d+ 1, such that

k �Q2 �Q2kL2(Rd;p) < "; (9)

where

�Q2(x) =
d+1X
i=1

aih(wi � x+ ti) + t0: (10)

Proof. We prove the latter half. By an appropriate nondegenerated linear
transform of (x1; � � � ; xd; 1) we have that Q2(x) =

Pd

i=1 ciu
2
i + c0 or Q(x) =Pd�1

i=1 ciu
2
i + cnun, where ui are linear sums of xi and a constant. This implies

that, without loss of generality, we can decompose Q2 into plane waves:

Q2(x) =
dX

i=1

ci(wi � x+ ti)
2 + cd+1(wd+1 � x+ td+1);

where some of ci may be zero, wi 2 Sd�1 and ti are constants. We may suppose
that h0(0) 6= 0 and h00(0) 6= 0. Otherwise, we can shift h so that this condition
is satis�ed. Then, by Lemmas 1, (wi � x+ ti)2 can be approximated by

1

h00(0)Æ2
(h(Æ(wi � x+ ti) � Æh0(0)(wi � x+ ti)� g(0))

in the sense of L2(Rd; p) with any accuracy. Consequently, Q2(x) can be ap-
proximated by

dX
i=1

aih(Æ(wi � x+ ti) + c0(w0 � x+ t0)

in L2(Rd; p). Again by Lemmas 1, (w0 � x+ t0) can be approximated by

1

h0(0)Æ
(h(Æ(w0 � x+ t0)� g(0))

in L2(Rd; p). Hence, Q2(x) is approximated by

�Q2(x) =
d+1X
i=1

aih(Æ(wi � x+ ti) + t0
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in L2(Rd; p). This concludes the proof.

Note that Qk 2 L2(Rd; p), k = 1; 2, is the prerequisite condition when we
treat the approximation of Qk in L2(Rd; p). In this sense, we have obtained
the slightest condition on Qk and p. Lemma 1 implies that this result can be
extended to derivatives.

4. Discussions

In the cases of many familiar probability distributions belonging to the expo-
nential family, the log ratio g(x) of a priori probabilities is a polynomial of low
degree. For the binomial, polynomial or gamma distribution, g(x) is a linear
function, and for the normal distribution, g(x) is a quadratic form. We can
mention many such probability distributions. In these cases, the neural net-
work having rather a small number of hidden layer units may approximately
realize the Bayesian discriminant funtion without knowing the type of proba-
bility distribution before learning. If g(x) is a polynomial of degree up to 2,
the number can be d+ 1. Accordingly, our result may be widely applied.
Theorem 2 implies that if a three layered neural network has a linear unit on

the output layer, the output can approximate the discriminant function g in the
sense of L2(Rd; p). If the activation function of the unit is the logistic function
�, its output can approximate the a posteriori probability �(g(x)) = p(!1jx).
This approximation can also be realized in the sense of L2(Rd; p), because
j�( �Qk(x)� �(Qk(x))j < j �Qk(x)� Qk(x)j.
In the case of multicategory classi�cation, gi(x) = logP (!ijx)� log(1 �

P (!ijx)) is not a polynomial even if the log likelihood ratio is a polynomial.
Nevertheless the network may approximate the a posteriori probability, if it
has suÆciently many hidden layer units. However, gij(x) = logP (!ijx) �
logP (!jjx) is a polynomial. Using this fact, we can construct a neural network
which may output maxfP (!ijx)ji = 1; :::; cg. The details will be described
elsewhere with experimental results.
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