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Abstract. We treat the Bayesian decision problem, mainly the two-
category case. A three layered neural network, having a logistic output
unit and a small number of hidden layer units, can approximate the
a posteriori probability in L?-norm, without knowing the type of the
probability distribution before learning, if the log ratio of the a posteriori
probabilities is a polynomial of low degree as in the case of most familiar
probability distributions. This is because the log ratio itself can be well
approximated by a linear sum of outputs of the hidden layer units in
L?-norm.

1. Introduction

In the case of the two-category Bayesian classification, the log ratio g of the
a posteriori probabilities (probability densities)

g(z) = log P(w1|z) — log P(w2|x) (1)

and its monotone functions can be used as Bayesian discriminant functions
[1]. Recently Funahashi (1998) has treated a special case of the two-category
classification that the state-conditioned probabilities are normal. He proved
that a three layered neural network having an output unit with the logistic
activation function o and at least 2d hidden layer units can approximate the
contraction ¢(g) of the log ratio g in L?-norm, showing that o(g) = P(w:]|z).
Since o is monotone increasing, ¢(g) can be sued as a Bayesian discriminant
function.

In this paper, we prove that, in the case where the log ratio g of the a
posteriori probabilities is linear (resp. linear or quadratic), the network having
two (resp. d + 1) hidden layer units can approximately realize the Bayesian
discriminant function, g or o(g), for the two-category classification. Hence,
the number 2d obtained by Funahashi is decreased to d + 1. Moreover, the
Bayesian discriminant function g¢ itself can be approximated in the L?-norm in
our theorem. If the learning is not trapped at a local minimum, the network
can realize the approximation without knowing the type of the probability
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distribution. The tools are an approximation theorem in [3] and the result in
[4]. We also discuss on the extension of our result to multicategory cases.

2. Bayesian decision theory and neural networks

The basic notation in this paper follows [1]. We use a three layered neural
network having ¢ output units and N hidden layer units, denoting the outputs
by Fy(w;|z). We expect that F, (w;|z) approximate the a posteriori probabili-
ties P(w;|z) respectively. Let ¢ and ¢ be the activation functions of the output
and the hidden layer units. Then,

N

Fy(wilr) = SD(Z cijd(wij - +ti5) +tio), i=1,..¢c, (2)
j=1

where w is the connection weight and w; stand for the categories.
We summarize here the results described in [2] and [4], which are ingredients
of this paper.

2.1 Theory by Ruck et al.

Let (z,w) € RYxQ, Q= {wi,...,wc} be teacher signals and let & (w) = 1
for w = w; and &;(w) = 0 for w # w;. Then, the mean square deviation of the
outputs from &;(w) is

c

= [ S U (Fteale) = 1) pletle) + F (w1 = pleale)} )

i=1

)+ [ 30 Pl - Plaslo)p(e)de, (3)
where

W= Z feile) = Plafa))p(e)da

[4]. Since the second term on the most right hand side of (3) is independent of
w, minimization of F(w) by modifying w implies that of the first term.

Let {(x(j),w(j))}ﬁl be a sequence of independent teacher signals with prob-
ability distribution p(x,w). Then,

ZZ wl(wileD) — & (WD))? (4)

converges to F(w) almost everywhere. If the gradient descent method is com-
bined with (4), the outputs F, () (w;|2) of the network may converge to P (w;|x)
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respectively in the sense of L?(R9,p), where w™) is the weight vector at the
n-th step.

2.2 Funahashi’s network

This result was applied by Funahashi to the case where ¢ = 2 and p(x, w;),
i = 1,2, are normal ditributions [2]. In this case the decision function (1) is
a quadratic form. His network has an output unit with the logistic activation
function o(¢) = (1+e~")~! and hidden layer units with a sigmoidal C*-function
¢ as the activation function.

Noting that t? can be uniformly approximated by a linear sum of the form
Zle c; (0t +1;) + 1o on any finite interval, he used a linear sum Z?il e (wi -
z+1t;)+1tp to approximate a quadratic form. Since ¢(w; -z +1;) can be outputs
of the hidden layer units, the output of the network 1s

2d

a(g(x)) = oD cid(w; -z +t;) + o).

i=1

If g is the discriminant function defined by (1), o(g(#)) = p(wi|z). Since ¢
is monotone increasing, o(g(x)) is also a discriminant function. Since ¢ is a
contraction, the uniform approximation of ¢ by g on any compact set K implies
approximation of 0'( ) by o(g) in L*(R%,p): [|o(9(2)) — o(g(z))|*p(x)de <
Jic lg( (2)*p(x)de+ [ p(x)de < 2e.

3. Main Theorem

In this section, we prove that the log ratio ¢ itself defined by (1) can be
approximated in LZ(R%, p). If g is linear the number of the hidden layer units
can be only 2, and if ¢ is a quadratic form the number can be as small as d + 1.
The class of activation functions is sufficiently wide. For simplicity, we suppose
that the probability distribution is continuous.

3.1. Approximation on R
The lemma below is a special case of the theorem obtained in [3].

Lemma 1. Let p be a probability measure on R such that ¢ € L?(R, p) and
let € R If () is bounded for i = 0, - - -, k, then, for any ¢ > 0, there is a
constant § for which

0)t = 2L hst) = Ol r ) < 6)

holds for ¢ = 0, -- -, k.
Furthermore, if t* € L?(R, p), then, for any € > 0, there is a constant & for
which both (5) and

Lo, od 5 d 1 ,
577 (0) 77 t" = =5 55 (h(68) = 0B (0) = h(O)||r(rp) <€ (6)

hold for ¢ = 0,--- k.
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Proof. We describe the proof of the latter half. Applying Maclaurin’s theorem
to h(dt), we have that

Loy - %(h(ét) — Sh'(0)t — h(0)) = %(h“(()) — h''(05t))t*

for ¢ = 0. By assumption, there is M > 0 for which the right hand side is

bounded by Mt2. Since t? € L*(R, p), there is a finite
interval I such that

N ™

1
|§(h“(0) — h(05))Ptrdp(t) < [ M*t*dp(t) <
Ic . Ic

For the I, there is § > 0 for which
1 " " 244 €
1500 = g0 Prap(o) <
as ¢'' is continuous. Hence, we obtain that
1 " " 244 € €
|=(R"(0) = A" (60t))|"t dp(t) = | + <4 ==e.
91 S22

We have that, for ¢ = 1,

B (0)t — %(h’(ét) — B(0)) = (h"(0) — K" (5L))t = M,

and, for ¢ = 2, h''(0) — h"(5t) < M. Hence, similarly to the case i
= 0, we obtain (6) for ¢ = 1, 2. For ¢ > 2, we have that

di , di1

et — e (h(61) — (0}t — g(0))] = [0 2h 0 (81)| < 6720

1
Eh//(o)
The proof of (5) is similar and easier.

3.2. Approximation of the discriminant function

Let p be a probability measure defined on R% and let L, = {tw| — oo <
t < oo} for w € S?! where S?~! is the unit sphere in R¢. Denote by p,, the
projection of p onto L. A function f such that h(x) = h(w - ) is called a
plane wave in the direction of w € $4~1. For the A,

[ rerdnte) = [ hadpate) = [ b 2)dpa o)

The most right hand side of this equation can be regarded as an integral over
the line Ly,. Hence, we can apply Lemma 1 to h(w - z).

We denote by )1 a linear function in z and by ()2 a nonhomogeneous
quadratic form.

Theorem 2. Let h € C*(R) be a bounded nonconstant function, let p be
a probability measure on R? and let Q1 be a linear function in z € R%. If
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Q1 € L*(R4, p), then, for any € > 0, there are coefficients a;, vectors w; € S¢~!
and constants t;, ¢ = 1,2, such that

Q1 — Qull2(rapy < &, (7)
where
) 2
Ql(x) :Zaih(wi'x+ti)+t0~ (8)
=1

Let g € C?(R) be a bounded nonconstant function, let p be a probability mea-
sure on RY and let Q)5 be a quadratic form defined on R4. If Q2 € L%(R?, p),
then, for any € > 0, there are coefficients a;, vectors w; € 81, i=1,... d+1,
and constants t;, ¢ = 1,---,d + 1, such that

Q2 — QallL2(ra py < &, (9)
where
) d+1
Q2(x) = aih(w; -z + ;) +to. (10)
i=1

Proof. We prove the latter half. By an appropriate nondegenerated linear
transform of (z1,---,24,1) we have that Qa(z) = Zgzl ciul + co or Q(z) =
Zf:_ll ciu? + ¢pun, where u; are linear sums of #; and a constant. This implies
that, without loss of generality, we can decompose ()2 into plane waves:

Q2(x) = Z cilwi -2 +1:)? + cap1(War1 - T +tag1),
i=1

where some of ¢; may be zero, w; € S9! and ¢; are constants. We may suppose
that A'(0) # 0 and h"(0) # 0. Otherwise, we can shift h so that this condition
is satisfied. Then, by Lemmas 1, (w; -  + ¢;)? can be approximated by
1
pryez (MO @+ 1) = N (O)(wi &+ i) = 9(0))
in the sense of L?(R%, p) with any accuracy. Consequently, @2(x) can be ap-

proximated by
d

Zaih(é(wi cx 4 1) + co(wg -z + to)

i=1

in L2(R%, p). Again by Lemmas 1, (wq -  +t5) can be approximated by

in L2(R¥, p). Hence, Q2(z) is approximated by

d+1

Qa(2) = aih(8(w; - &+ 1;) + to

i=1
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in L2(R¥, p). This concludes the proof.

Note that Qg € L%(R%, p), k = 1,2, is the prerequisite condition when we
treat the approximation of @y in L?(R?, p). In this sense, we have obtained
the slightest condition on @ and p. Lemma 1 implies that this result can be
extended to derivatives.

4. Discussions

In the cases of many familiar probability distributions belonging to the expo-
nential family, the log ratio g(z) of a priori probabilities is a polynomial of low
degree. For the binomial, polynomial or gamma distribution, g(z) is a linear
function, and for the normal distribution, ¢(z) is a quadratic form. We can
mention many such probability distributions. In these cases, the neural net-
work having rather a small number of hidden layer units may approximately
realize the Bayesian discriminant funtion without knowing the type of proba-
bility distribution before learning. If g(«) is a polynomial of degree up to 2,
the number can be d 4+ 1. Accordingly, our result may be widely applied.

Theorem 2 implies that if a three layered neural network has a linear unit on
the output layer, the output can approximate the discriminant function ¢ in the
sense of L2(R?, p). If the activation function of the unit is the logistic function
o, its output can approximate the a posteriori probability o(g(z)) = p(wi|z).
This approximation can also be realized in the sense of L%(R¢ p), because
0(Qu(2) — o @k(2))] < |Qu(x) - Qu(x)].

In the case of multicategory classification, g;(z) = log P(w;|®)— log(1 —
P(w;|z)) is not a polynomial even if the log likelihood ratio is a polynomial.
Nevertheless the network may approximate the a posteriori probability, if it
has sufficiently many hidden layer units. However, g;;(z) = log P(wi|z) —
log P(wj|x) is a polynomial. Using this fact, we can construct a neural network
which may output max{P(w;|z)|i = 1,...,¢}. The details will be described
elsewhere with experimental results.
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