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Abstract. Some recent works address the problem of blind source sep-
aration with a matrix pencil. In this paper we show that the covariance
matrices of the pencil can be computed at the output of a simple linear
filter instead of using time-delayed covariance matrices. It is also shown,
using block matrix manipulation, that the method might applied when
the number of source signals is not equal to the number of mixed signals.
An experimental study, comparing different strategies of computing the
matrix pencil, is also presented.

1 Introduction

The Blind Source Signal Separation is a problem that arises in many applica-
tion areas such as communications, speech and biomedical signal processing.
The objective is to extract the source signals from some sensor measurements
x(t). Generally, it is assumed that each measured signal is an instantaneous
mixture of the source signals. The mathematical model for this problem is
x(t) = As(t), where A is the mixing matrix, s(t) is a vector of source signals
at time t. The extraction must be carried on without knowing the structure
of the linear combination (the mixing matrix) and the source signals. Most
of the solutions comprise two steps[1][2]. In the first step, called the whiten-
ing (sphering) phase, the measured data is linearly transformed such that the
correlation matrix of the output vector equals the identity matrix. During
this phase the dimensionality of the measured vector is also reduced to the
dimension of the source vector. After that the separation matrix, between the
whitening data and the output, is an orthogonal matrix computed using the
fourth-order cumulant or some related method. Then the separation matrix,
or an estimate of the inverse of A, is the product of the two matrices computed
on the two phases of the method. Another approach comprises the simulta-
neous diagonalization of a matrix pencil (R1, R2),i.e., a generalized eigenvalue
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decomposition (GSVD). The matrices are calculated with different strategies:
Souloumiac [3] consider two segments of signals with distinct energy; Tomé[4]
and Stone[5] compute one of matrices in filtered versions of the mixed signals;
and Molgedey [6]and Chang [7],[8] computes time-delayed correlation matrices.
This work presents a complete linear algebra formulation for the GSVD

approach to the blind source separation problem. The formulation reveals that
the matrix pencil can be computed on the filtered signals and, that the quality
of the separation is dependent on the eigenvector matrix of an equivalent GSVD
statement on the source signals. Some simulation are also presented comparing
the results achieved with the GSVD approach and FastICA algorithm [9] which
is an algorithm that relies on a prewhitening phase. The simulations also
compare the results achieved by GSVD when the matrix pencil is computed
using filtered signals with the time-delayed correlation matrices as proposed by
Chang [7] and Molgedey[6].

2 The Generalized EigendecompositionMethod

The generalized eigendecomposition comprises the simultaneous diagonaliza-
tion of two matrices, the so called matrix pencil. Let X be a m × N matrix
containing a segment with N samples of each of m measured signals. The
correlation matrix for X is a m×m matrix and is calculated as

R1 =
1

N
XXT (1)

Let Y be a matrix m×N having in each raw a filtered version of each raw
in X. Considering that a FIR (finite impulse response) of length M (M <<
N) was used, the convolution operation of the linear filtering is expressed as
Y = XHT , where H is a N ×N Toeplitz matrix with h(n)−the nth sample
of impulse response-on the nth diagonal[10]. The correlation matrix of Y is
m×m defined by

R2 =
1

N
XHTHXT (2)

Using the matrix pencil (R1,R2) the generalized eigenvalue (GSVD) state-
ment is

R1E = R2ED (3)

where E is a m×m eigenvector matrix and D is a diagonal m×m matrix
with the eigenvalues of the matrix pencil (R1, R2). Considering that X is an
instantaneous mixture of the sources signals, i.e., X = AS, the equation can
be written as

ARsA
TE = ARsfA

TED (4)

The previous equation shows that the statement (3) is also related with the
source pencil (Rs, Rsf ). In [11] two matrix pencils are called congruent pencils
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if A is an invertible matrix. It is suggested that the eigenvalues are the same
for both pencils and that the eigenvectors are related. Those assumptions can
be proved [4]:

• The eigenvalues are the roots of the characteristic polynomial which is
χ(λ) = det(ARsA

T − λARsfA
T )=det(Rs − λRsf ), if A is an invertible

matrix.

• Considering the matrix pencil of the source signals, the GSVD statement
should be RsEs = RsfEsD, having D unique values on the diagonal,
each eigenvector for a particular eigenvalue are related by

Es = A
TE

In what concerns the blind source separation problem the eigenvector matrix
E will be an approximation to inverse of mixing matrix, if the Es is a diagonal
matrix (or a permutation). This is a fact when the matrix pencil of the source
signals are both diagonal.

2.1 Rectangular Mixing Matrix

When the mixing matrix is a m × n (m > n) the equation (4) might written
using block matrix notation. Considering A and E divided into two blocks: A
into AH, n× n, and AL, (m− n)× n; E into EH , n×mand EL, (m− n)×m,

AH
AL

Rs ATH ATL
EH
EL

=
AH
AL

Rsf ATH ATL
EH
EL

D

(5)
Working the previous expression, two equations are obtained

AHRsΦ = AHRsfΦD
ALRsΦ = ALRsfΦD

(6)

where Φ = ATHEH + A
T
LEL = ATE is n ×m matrix. The first equation

shows that this case also resumes the relation among equivalent pencils. Φ
is a matrix that also represents the eigenvector matrix of the source matrix
pencil having (m− n) columns of zeroes paired with the eigenvalues in D that
does not belong to eigenvalue decomposition of (Rs, Rsf ). In the blind source
separation, it is possible to find out the number of sources because after the
separation (m− n) zero amplitude signals are obtained.

3 Simulation Results

Some simulations are carried on using the signals of the demo created in [9]and
colored noise as described in[7]. The first group of signals are used to illustrate
the results of the method described here using a two coefficients FIR filter
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Figure 1: Separation of the 4 source signals having 5 mixed signals

Method source 1 source 2 source 3 source 4

GSVD/FIR 0.98 0.94 0.96 0.90
GSVD/TD 0.67 0.67 0.70 0.82
FastICA 0.95 0.95 0.94 0.87

Table 1: The performance index (FastIca toolbox signals and 4x4 mixing matrix)

(h = [0.5 0.5]). The figure(1) shows the rectangular mixing cases where the
first separated signal has very low amplitude as expected.
The second experiment pretends to evaluate the quality of the separa-

tion using GSVD and different strategies to estimate the correlation matrices:
on filtered mixed signals (GSVD/FIR); and time-delayed correlation matri-
ces (GSVD/TD) with (k1 = 1, k2 = 2) as described in [7] but using only
one iteration, i.e., computing only one pair of matrices in the complete set
of mixed signals. The results of the separation are also compared with Fas-
tICA algorithm[9]. The performance of the methods is evaluated using the
performance index parameter. The parameter computes the degree of diago-
nalization of the product (C) of the separation matrix by the mixing matrix.
This parameter is computed for each raw i of C and is defined by

pi =
max(|Ci|)

|Cij | .

If the matrix C is a permutation of a diagonal matrix, the absolute maxi-
mum of each raw must belong to distinct columns. So, in a trial a particular
performance index, pk is considered valid if the maximum belongs to column
j with no maximum of other raw(i 9= k), otherwise the source signal j is not
extracted.
Using the FastICA toolbox signals, the mean value of the performance index

for each source signal, when a separation is achieved, is computed for the three
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Method source 1 source 2 source 3 source 4

GSVD/FIR 0.88 0.74 0.70 0.78
GSVD/TD 0.77 0.64 0.59 0.68
FastICA 0.26 0.30 0.23 0.23

Table 2: -The performance index (colored noise signals and 4x4 mixing matrix)

Method source 1 source 2 source 3 source 4

GSVD/FIR 0.99 0.94 0.96 0.90
GSVD/TD 0.67 0.71 0.70 0.84
FastICA 0.96 0.95 0.95 0.87

Table 3: The performance index (signals of FastIca toolbox and 6x4 mixing matrix)

methods (tables 1 and 3). With this signals both FastICA and GSVD/FIR sep-
arate all the sources in every trial (of a total 100) while GSVD/TD does not sep-
arate all the signals in 50% of the trials. We can see that the GSVD/TDmethod
has the lowest performance index for all the source signals while GSVD/FIR
and FastICA have very similar values. With the colored noise signals (tables
2 and 4): the FastICA algorithm does not converge in 50% of the trials and
the mean value of the performance index is very low. The GSVD/TD does not
separate all signals in 20% of the trials but the performance index is slightly
higher when compared with the other group of signals. The GSVD/ FIR does
not separate all the signals in 2% of the trials and the values of the performance
indexes, for all the sources, are the highest ones.

4 Conclusions

In this paper a second order statistical method for source separation that is
based on a eigendecomposition of a matrix pencil. An alternative formulation
based on the definition of congruent pencil and block matrix manipulation was
also presented. This method was also used in other works but the matrix
pencil is computed with different strategies. The experimental study proves
that the strategies used to compute the matrix pencil have influence on the
performance of the method. Using correlation matrices computed on the mixed
signals and on the filtered mixed signals, the GSVD method performs better
than with time-delayed correlation matrices. This experimental study should
be further developed in order to understand completely the possible influence
of the eigenvalues on the performance as suggested in other works [3] and [8].
Chang proposes an iterative procedure based on the assumption of multiple
eigenvalues and Souloumiac considers that the best solution are achieved when
there is an eigenvalue spread.
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Method source 1 source 2 source 3 source 4

GSVD/FIR 0.88 0.76 0.73 0.77
GSVD/TD 0.75 0.66 0.62 0.69
FastICA 0.26 0.26 0.24 0.23

Table 4: The performance index (colored noise signals and 6x4 mixing matrix)
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