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Abstract. We present a novel unsupervised artificial neural network
for the extraction of common features in multiple data sources. This
algorithm, which we name Exploratory Correlation Analysis (ECA), is a
multi-stream extension of a neural implementation of Exploratory Pro-
jection Pursuit (EPP) and has a close relationship with Canonical Corre-
lation Analysis (CCA). Whereas EPP identifies ”interesting” statistical
directions in a single stream of data, ECA develops a joint coding of the
common underlying statistical features across a number of data streams.

1 Introduction

In many real world situations, information is not available in a direct and clear
way due to corruption of the signals. One approach to uncovering the inherent
structure from these signals is to perform several measurements, possibly using
different sensing techniques. By working on the principle that all of the signals
share the same fundamental information, we may process the data in multiple
streams in such a way that we identify significant features within streams that
are also common between streams.

In this paper we present a neural method capable of extracting features
from different data sources and combining these to form a jointly sparse cod-
ing. Other statistically based dual stream neural architectures have been pro-
posed [1] [2] [3] but these tend to be based on second-order canonical correlation
analysis. The method that we propose is capable of searching for higher order
shared structure between data streams. Information theoretic based approaches
have also been proposed which concentrate on the stereo disparity problem [4]
or on contextual guidance [5].

2 Exploratory projection pursuit

Before we outline the Exploratory Correlation Analysis (ECA) algorithm, it
is useful to explain the method on which it is based - Exploratory Projection
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Pursuit (EPP). EPP is a statistical technique that is used to visualise structure
in high dimensional data. We project the data to a lower dimensional space
which enables us to look for interesting structure by eye. The projection should
capture all of the aspects that we wish to visualise, which is done by maximising
an index that defines a degree of ’interest’ of the output distribution [6].

One such measure is based on an argument that states that random projec-
tions tend to result in Gaussian distributions [7]. Therefore, we can define an
interesting projection as one that maximises the non Gaussianity of the out-
put distributions. Several measures of non Gaussianity currently exist. In this
paper we will concentrate on measures that are based on kurtosis and skewness.

2.1 Neural EPP

Our ECA network is most strongly related to the single stream, neural EPP
algorithm based on the negative feedback framework [6]. The operation of the
EPP network is outlined by (1) to (3). (1) describes the feed-forward step,
in which the input values, x, are multiplied by the weights, W, and summed
to activate the output. This is followed by a feedback phase (2) in which the
output values, y, are fed back through the weights and subtracted from the
input to form a residual, r. This residual is then used in the weight update
rule (3), where 7 is a learning parameter.

= Wx (1)
r = x-Wly (2)
AW = nf(y)r? 3)

The function f(y) in (3) causes the weight vectors to converge to directions
that maximise a function,g(y), whose derivative is f(y).

For reasons of stability, the output functions are replaced by functions that
have the same truncated Taylor Expansion. Instead of using f(y) = y® the
function f(y) = —tanh(y) = —y + 3¥° — 2¥° + ... may be used.

3 Exploratory Correlation Analysis

We have extended the Neural EPP algorithm to allow for multiple input streams.
Both streams are assumed to have a set of common underlying factors. Math-
ematically we can write this as

yi=Wxy
Yo =Vxs

The input streams are denoted by x; and x2, the projected data by y; and
¥» and the basis vectors are the rows of the matrices W and V. Each input
stream can be analysed separately by performing EPP and finding common
statistical features that have maximum non Gaussianity. However, if we know
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that the features we are looking for have the same statistical structure, we can
add another constraint which maximises the dependence between the outputs.
This is depicted schematically in Figure 1.
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Figure 1: Diagram of the ECA network

The simplest way to express this formally is by maximising E(g(y,;)Tg(y,))-
We also need to ensure the weights do not grow without bound, which we can
achieve by adding weight constraints WIW = A and VTV = B. Writing this
as an energy function with Lagrange parameters \; ; and p;; we obtain (4).

N N
JWV) = BleWx) (V%) + 3 03 Aus(whw; —aij) +

i=1 j=1

1 N N
2 SO wii(vivi—bij)

i=1 j=1

Using a derivation similar to [8] and [6], we can optimise this function by
stochastic gradient ascent. For A = I and B = I, we obtain the following
rules, where the ® operator is defined as the element-wise multiplication of
two vectors.

AW = 1n(gly) ® &' (y1)(x{ —yi W)] (4)
AV = 1l(gly1) @ g (¥2)(x3 —y3 V)] (5)

As with the neural EPP algorithm, we need to replace the output functions
with stable versions for the ECA algorithm. In contrast to the neural EPP
algorithm, we not only require the derivative of the function to be maximised,
but also the function itself. We therefore need an additional stable function,
whose truncated Taylor expansion is g(y) = y*. The function we chose for the
experiments in this paper is g(y) = 1 — exp(—y*).

3.1 Connection to CCA

The linear one unit exploratory correlation analysis network is closely related
to classical CCA. When the network is fully converged, the expected change in
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weights will be zero [9].

E(6w) =E(my2(x1 —yiw)) =nB((v %)% — (wixixzv)w) =0
E(6v) =E(myi(x2—y2v)) =nE(w'x1)xs — (v Xax]{ w)v) =0

Writing the term wlx;x1v as A, vIxoxIw as A2, E(x1x]) as Ci2 and

E(x2xT) as Cs,1 we obtain:

VTCQ’l = )\1WT

WTCL2 = \yvT
and

CLQCQJW = /\1/\2W
02,10172V = /\1)\2V

When the network is stable, the weight vectors will therefore be eigenvectors
of C12C5,1 and Cy1C1 2. Classical CCA however, requires the solutions to be
eigenvectors of C;%Cl,gC;%Cz,l and 02_’2102,1 C’;%Cl,z. The ECA network is
capable of performing CCA, if the data-sources x; and x» are sphered prior
to training the network by pre-multiplying them by C; 11/ * and G, ;/ 2, which
causes C1,1 and C5 2, and therefore their inverses to become identity matrices.
The resulting CCA weight vectors will be C;1/*w and C5,/* v.

4 Experiments

A simple experiment was performed to test the network. We used an artificial
data-set, generated from a kurtotic and a normal data source. The inputs to
the network are two three-dimensional input vectors as shown in Table 1. We
used three types of data source, each with a different kurtosis value. Input Sy
and S, were generated by taking a value from a normal distribution and raising
it to the power of 5. Input S3 was generated from a normal distribution raised
to the power of 3. The common data source S3 is therefore less kurtotic than
input S; or Sy. The last data source we used is S, which was taken from a
normal distribution. In order to show the robustness of the network we added
zero mean Gaussian noise with variance 0.2 to each of the inputs independently.

T11 = S1 + N(O, 02) T2 = Sy + N(O, 02)
T12 = S3 + N(O, 02) T22 = S3 + N(O, 02)
Z13 =S4+ N(0,0.2) 223 =S4+ N(0,0.2)

Table 1: Artificial data set. S; and Ss are more kurtotic than the common
source S3. S4 is a normal data source.

After training the network for 50000 iterations with a learning rate of 0.003,
the weights converged to the values shown in Table 2 The network has clearly
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identified the common kurtotic data source and has ignored the common normal
input and the independent input sources S; and Ss, although they are more
kurtotic than Ss.

w | 0.0029 1.0000 0.0028
v | 0.0043 1.0000 -0.0182

Table 2: Weightvectors after training the ECA network on artificial data.

4.1 Dual Stream Blind Source Separation

In this section we describe an experiment which is an adaption of the blind
source separation problem [10]. In blind source separation we assume that we
can model a set of observed data vectors x as a mixture of unknown sources s.
These sources are mixed by an unknown mixing matrix A so that x = As.
The goal is to find the unmixing matrix W, so that we can recover the un-
known sources, where s = Wx. The matrix W can be estimated by finding
directions that are statistically independent, which amounts to maximising the
non-gaussianity of the estimated source signals. It is therefore possible to use
EPP to estimate a solution of the blind source separation problem.

Our adaption of the original blind source seperation problem uses two sets
of inputs instead of one, which are both different linear mixtures of the same
source signals. We used mixtures of three source signals, which were created
artificially by randomly taking samples from a normal distribution and raising
them to the power of 3, to give kurtotic signals.

The mixing matrices, A and B, are shown below.

2 51 3 6 1
A= 5 2 9 B=|9 47
9 2 3 1 5 3

To show the unmixing properties of the network, we examine WC' 11/ 24
and VC,,"*B.

~0.0013 —1.0006 —0.0006
wer?A= 1.0002 00311 —0.0038
~0.0021 —0.0036  1.0000

—0.0021 —1.0006 —0.0017
VC;,’B = 1.0002  0.0313 —0.0031
—0.0021 —0.0036  1.0000

These matrices show that combining the mixing, sphering and unmixing
operations result in matrices that contain a one or minus one in each row. This
indicates that the ECA algorithm has successfully unmixed the sources and has
identified the common sources.
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Conclusion

We have presented a neural network based algorithm, based on the EPP net-
work that can uncover joint structure in data streams. The learnt features
represent a joint coding of the common underlying statistical features across
the data streams. We have shown a close relation between the linear version of
the ECA network and standard statistical CCA.

In the future we intend to explore other algorithms within this framework

and investigate their application to natural image coding. Furthermore, the
application of the network to areas of remote sensing may prove fruitful.
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