ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 79-84

A Neural Graph Isomorphism Algorithm based
on Local Invariants

Brijnesh J. Jain and Fritz Wysotzki

Dept. of Electrical Engineering and Computer Science, TU Berlin
Franklinstr. 28/29, D-10587 Berlin, Germany

Abstract. We present a neural network approach to solve the graph iso-
morphism problem. In contrast to other neural heuristics or related meth-
ods our approach is based on approximating the automorphism partition
of a graph to reduce the search space followed by an energy-minimizing
matching process. Experiments on random graphs with 100 - 5000 ver-
tices are presented and discussed.

1 Introduction

Given two graphs G and H the graph isomorphism problem (GIP) is the prob-
lem of deciding whether G and H are structurally equivalent. The problem is of
practical as well as theoretical importance. Applications include the identifica-
tion of isomorphic molecular structures in chemistry, the recognition of protein
molecules, the detection of kinematic chains, or optimal routing of messages
in multistage interconnecting networks (see [1] and references therein). The
theoretical interest in the GIP is based on the persistent difficulty in character-
izing its computational complexity. The isomorphism problem is still unsolved
in the sense that there is neither an NP-completeness proof, nor an efficient
algorithm with polynomial complexity has yet been found.

Despite the practical and theoretical importance of the GIP no neural net-
work approach and related heuristics can be used unmodified in a practical
setting. Even the most powerful approaches by Pelillo [6] and Rangarajan et
al. [8], [9], require a prohibitive amount of time and are too erroneous on ran-
dom graphs with only 100 vertices, although the GIP is considered to be trivial
for almost all random graphs [3]. The main reason that neural networks or re-
lated methods are not competitive with efficient graph isomorphism algorithms
is that they solely rely on powerful energy minimization procedures and neglect
graph-theoretical properties that are preserved under isomorphism.

In this paper we devise a two stage neural graph isomorphism (NGI) algo-
rithm. In a preprocessing step a neural stabilization procedure partitions the
vertex sets of both graphs into equivalence classes. In a second step the infor-
mation about the vertex partitions is used to match the graphs with a special

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 79-84

Hopfield network. The effectiveness of the proposed NGI approach is tested on
random graphs with 100 - 5000 vertices.

2 Terminology and Definitions

Let V be a set. With [V]? we denote the set of all 2-element subsets {i, j} C V.
A partition P = {V1,...,V;} of aset V is a set of disjoint non-empty subsets
Vi C V whose union is V. Let P(V) be the set of all partitions of V. The
elements V; of a partition P € P(V) are usually called its cells. If P, P' € P(V),
we say P is finer than P’, if every cell of P is a subset of some cell P'. In this
case we call P’ coarser than P.

A graph G consists of finite sets V(G) # 0 and E(G), such that E(G) C
[V(G)]2. The elements of V and E are called vertices and edges, respectively.
With G we denote the set of all graphs. A subset C),, C V(G) consisting of m
vertices is called clique of G if [C),]2 C E(G). A mazimum cligue is a clique
with maximum cardinality of vertices. A mazimal clique is a clique which is
not contained in any larger clique. The cliqgue number w(G) of a graph G is the
number of vertices of a maximum clique in G.

Let G and H be two graphs. An isomorphism from G to H is a bijective
mapping ¢ : V(G) = V(H), i — i® with {i,j} € E(G) & {i?,j?} € E(H) for
all 4,5 € V(G). If there is an isomorphism between two graphs then the graphs
are isomorphic. The graph isomorphism problem is the problem of deciding
whether two graphs are isomorphic.

An automorphism of G is an isomorphism of G onto itself. Let Autg denote
the set of all automorphisms of G. Two vertices i, j € V(G) are similar (i ~ j)
if there is an automorphism ¢ € Autg with i® = j. The automorphism partition
Il of G is the partition of V(G) induced by the equivalence relation ~.

Let Gy = {(G,i) : G€ G,i € V(G)}. A function f: Gy = C" is a (local)
vertex invariant, if f(G,i) = f(H,i?%) for any isomorphism ¢ : G — H. The
best known and most frequently used vertex invariant is the degree of a vertex.
Further examples of local invariants assign a vertex ¢ the number of vertices
reachable along a path of length k, or the number of different cliques of size k.

3 A Neural Graph Isomorphism Algorithm

In practice, most algorithms adopt the same basic approach to the GIP, though
the details may vary considerably. To reduce the search space this approach
first approximates the automorphism partition of each graph using a vertex-
classification procedure which is based on a set of selected vertex invariants. In
a second step an isomorphism is constructed or non-isomorphism is established
by applying a breadth-first search, depth-first search, or a mixture of both
methods. The NGI algorithm as outlined in Table 1 follows a similar approach.

Before describing the essential parts (Step 1-3) of the NGI algorithm, we
introduce a technical definition for convenience of presentation: All neural net-

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 79-84

Let G and H be graphs with n vertices.

1. Classify vertices of G and H by using a neural stabilization procedure. The
outputs are vertex partitions of G and H which are coarser than or equal to
their automorphism partitions.

2. Use the vertex partitions obtained in Step 1 to construct an association graph
G o H of G and H. This maps the GIP to the problem of finding a maximum
clique in Go H.

3. Search for a maximum clique Cr, in Go H by using a special Hopfield network.
4. If m = n then output G ~ H otherwise G # H.

Table 1: OUTLINE OF THE NGI ALGORITHM

works involved in the NGI algorithm are associated with a specific graph. Net-
works for approximating the automorphism partition are associated with the
given graphs to test for isomorphism and the network for solving the maximum
clique problem is associated with their association graph. A neural network Ng
associated with a graph G consists of |V(G)| fully connected units. For any
vertex 1 € V(G) let N(i) denote the set of all vertices j adjacent to i. Then
the dynamics of the network is given by

zi(t+1) =2;(t) + wg - Z 0j(t) + wr - Z 0;(t) 1)

JEN() JEN ()

where z;(t) denotes the activity of unit 4. The synaptic weight between unit 4
and unit j is wg > 0, if the corresponding vertices are connected by an edge
{i,j} € E and wr <0, if {i,j} ¢ E. The output function o;(t) of unit ¢ is a
non-decreasing function applied on its activation z;(t).

Step 1 - Approrimating the Automorphism Partition: For any graph G, a sta-
bilization procedure starts with an initial partition P of V (&), which is coarser
than the automorphism partition Il of G. The partition P is iteratively re-
fined using a set of vertex invariants. If no further refinement is possible, then
the current partition is said to be stabilized. A stabilization procedure always
stabilizes in a partition which is coarser than or equal to Ils.

Let Ng be a neural network associated with G. Suppose the initial activa-
tion is identical for all units. Then N¢g together with the update rule (1) is a
stabilization procedure, which approximates the automorphism partition of G:
At each time instance t the activation vector x(t) of Ng induces a partition
P,(G) of the vertex set V(G). Two vertices i and j are members of the same
cell Vi (t) € Pg(t) if and only if z;(t) = z;(t). Since the initial activation is
identical for all units, the neural stabilizer starts with the coarsest partition
Py(G) consisting of the single cell V(@) and iteratively refines that partition
according to its dynamical rule (1). The network has stabilized if the current
partition P;(G) is not finer than P; 1(G). Theorem 3.1 and its implications
summarize and prove the statements of this paragraph.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 79-84

Theorem 3.1 Let Ng be the neural network associated with G and z;(0) = «
for alli € V(G). Then for alli,j € V(G) and t > 0 we have

i~g = zi(t) =x;(¢).

Proof: (Sketch) The assertion holds for ¢t = 0, since z;(t) = z;(t) = « for all ¢,j €
V(G) irrespective of the similarity relation ~. Now assume that ¢ ~ j = z;(t) = x;(t)
holds for some t > 0. Since i ~ j, there exists an automorphism ¢ € Autg with i® = j.
By construction of N¢g all self-coupling weights w;; are identical. Furthermore from
the definition of Ng together with the edge preserving property of an automorphism
follows that wix = w;e where w;, € {1, wg,wr}. Then by induction we have

zi(t+1) = Zwikok(t) = ijk¢ok¢ (t) = z;(t+1) .

From Theorem 3.1 directly follows, that for all ¢ > 0 the partitions P;(G) are
coarser than or equal to the automorphism partition II(G) of G. Thus it is left
to show, that the neural stabilizer N stabilizes within finite time. Since V' (G)
is finite, there are only finitely many partitions V' (G) which are coarser than
II(G). Thus any sequence of refinements is finite.

Notice that stabilization and convergence to a stable state are different

concepts. The first notion corresponds to stability of a partition, the latter
to stability of the state vector. For wg = 1 and w; = 0 we obtain Morgan’s
procedure [5].
Step 2 - Construction of an Association Graph: Let G and H be graphs with
n vertices. We map the GIP to the problem of finding a maximum clique in the
association graph of G and H. The association graph is a well-known auxiliary
structure which goes back to Ambler et al. [2] and has since been employed
with varied success not only to the graph isomorphism, but also to the more
general graph matching problem [7].

Let z;(G) and z;(H) be the activation of unit ¢ in Ng and j in Ny after
stabilization. The association graph G ¢ H of G and H is a graph with

V(GoH) = {(,5) € V(G) x V(H) | 2:(G) = w;(H) |

E(GoH) = {{(ik), (D)} € [V(Go M) | {i,j} € B(G) & {k,I} € E(H)}

Since G and H are isomorphic if and only if w(G o H) = n, we can cast the GIP
to the maximum clique problem in an association graph.
Step 8 - A Neural Maxzimum Clique Solver: For finding the maximum clique
in the association graph G o H of two given graphs G and H we use the winner-
takes-all (WTA) network as described in [4]. This WTA algorithm is extremely
fast and outperforms greedy heuristics with respect to both, speed and solution
quality. The performance of the WTA network is based on an optimal parameter
setting which is theoretically justified in [4].

The topology of the WTA net is associated with the graph G ¢ H, where the
connective weights wg and wy depend on the structure of G ¢ H. The WTA

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 79-84

edge probability p
0.01 0.05 0.1 0.2 0.3 04 0.5

100 6 3 2 3 3 3 5
500 72 49 57 55 53 55 58
1000 239 181 207 195 204 217 231
2500 || 1321 1140 1206 1150 1217 1360 1402
5000 || 5133 5080 4767 4740 5334 5594 6046

size n

Table 2: Average computational time in msec taken by NGI.

algorithm operates as follows: An initial activation is imposed on the network.
Finding a maximum clique then proceeds in accordance with (1) until the
system reaches a stable state. During evolution of the network any unit is
excited by all active units with which it can form a clique and inhibits all other
units. After convergence the stable state corresponds to a maximal clique of
G o H. The size of a maximal clique can be read out by counting the units with
activation z;(t) > 0.

4 Experimental Results

We tested the NGI algorithm on random graphs. The algorithm is implemented
in Java using JDK 1.2. All experiments were run on a Sparc SUNW Ultra-4.

For each isomorphism test we considered pairs of graphs (G, H) where G
is a randomly generated graph with n vertices and edge probability p and H
is a randomly permutated version of G. The chosen parameters were n =
100, 500, 1000, 2500, 5000 and p = 0.01,0.05,0.1,0.2,0.3, 0.4, 0.5. We generated
100 examples for each pair (n, p) giving a total of 3500 isomorphism tests. Note,
that the GIP of graphs with p > 0.5 is equivalent to the GIP of the complemen-
tary graphs. We have chosen random graph to facilitate comparison with the
best methods applied to the GIP within the neural network community, namely
the Lagrangian Relazation Network (LRN) by Rangarajan and Mjolsness [9], the
Optimizing Network Architecture (ONA) by Rangarajan, Gold, and Mjolsness [8],
and the Ezponential Replicator Equations (REP) by Pelillo [6].

NGI significantly outperforms LRN, ONA, and REP with respect to both, ac-
curacy and speed. Due to their high computational effort LRN, ONA, and REP
were tested on 100-vertex random graphs only. Accuracy of LRN, ONA, REP de-
grades for sparse graphs. The LRN algorithm terminated with a correct solution
for all test runs except for 5% failures at p = 0.01. ONA and REP performed
too defective on 100-vertex random graphs with p < 0.05. As an example for
p = 0.01 the percentage of correct solutions is about 0.11 for REP and 0.0 for
ONA. In contrast NGI gave exact results on all 3500 trials. But even if we are
willing to live with a small degree of uncertainty, LRN, ONA, and REP are pro-
hibitively slow. The average times to match two 100-vertex random graphs

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-930307-03-X, pp. 79-84

were about 600 - 1800 seconds for LRN on a SGI workstation, about 80 seconds
for ONA on the same SGI workstation, and about 3-2000 seconds for REP on a
SPARC-20 workstation. In contrast, the average time required by NGI is about
0.002 - 0.006 seconds for 100-vertex graphs and 5-6 seconds for 5000-vertex
graphs. Table 2 shows the average computational time in milliseconds (msec)
required by the NGI algorithm for an isomorphism test on random graphs with
the specified parameters n and p.

5 Conclusion

We have formulated and tested a neural network approach to solve the GIP
based on using local vertex invariants. Experimental results on random graphs
yield exact results on all 3500 trials within impressive time limits. The results
demonstrate that (1) neural networks are capable to discover structural proper-
ties in a preprocessing step, (2) the further neural processing of the discovered
structural properties to solve a given problem is of greater impact than sophis-
ticated energy minimization methods. In a forthcoming paper we intend (1) to
improve NGI by incorporating additional local graph invariants, and (2) extend
NGI to inexact graph isomorphisms of noisy data.

References

[1] M. Abdulrahim and M. Misra. A graph isomorphism algorithm for object recog-
nition. Pattern Analysis and Application, 1(3):189-201, 1998.

[2] A.P. Ambler, H.G. Barrow, C.M. Brown, R.M. Burstall, and R. J. Popplestone. A
versatile computer-controlled assembly system. In International Joint Conference
on Artificial Intelligence, pages 298-307. Stanford University, California, 1973.

[3] L. Babai, P. Erdos, and S. Selkow. Random graph isomorphism. SIAM Journal
on Computing, 1980.

[4] B.J. Jain and F. Wysotzki. Fast winner-takes-all networks for the maximum clique
problem. In 25th German Conference on Artificial Intelligence, pages 163—173.
Springer, 2002.

[5] H.L. Morgan. The generation of a unique machine description for chemical struc-
tures. Journal of Chemical Documentation, 5:107-112, 1965.

[6] M. Pelillo. Replicator equations, maximal cliques, and graph isomorphism. Neural
Computation, 11(8):1933-1955, 1999.

[7] M. Pelillo, K. Siddiqi, and S.W. Zucker. Matching hierarchical structures using
association graphs. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 21(11):1105-1120, 1999.

[8] A. Rangarajan, S. Gold, and E. Mjolsness. A novel optimizing network architec-
ture with applications. Neural Computation, 8(5):1041-1060, 1996.

[9] A. Rangarajan and E. Mjolsness. A Lagrangian relaxation network for graph
matching. IEEE Transactions on Neural Networks, 7(6):1365-1381, 1996.

