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Abstract. In this paper, we merge the parametric structure of neu-

ral networks into a segmental semi-Markov model to set up a Bayesian

framework for protein structure prediction. The parametric model, which

can also be regarded as an extension of a sigmoid belief network, cap-

tures the underlying dependency in residue sequences. The results of

numerical experiments indicate the usefulness of this approach.

1 Introduction

A variety of approaches have been proposed to derive the secondary struc-
ture of a protein from its amino acid sequence. Beginning with the seminal
work of Qian and Sejnowski [4], many of these methods have utilized neural
networks. A major improvement in the prediction accuracy of these methods
was made by Rost and Sander [5], who proposed a prediction scheme using
multi-layered neural networks, known as PHD. The key novel aspect of this
work was the use of evolutionary information in the form of a profile derived
from multiple sequence alignments instead of training the networks on single
sequences. Recently, Schmidler [6] presented an interesting statistical model for
protein structure prediction, which is a segmental semi-Markov model (SSMM)
for sequence-structure relationships. In the probabilistic framework, it is ad-
vantageous to incorporate varied sources of sequence information using a joint
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sequence-structure probability distribution based on structural segments; struc-
ture prediction can then be formulated as a general Bayesian inference problem.
However, the potential capability of this model has not been fully exploited so
far. In this paper, we propose a parametric likelihood function for the SSMM
to capture the inter-residue dependency in protein sequences. The parametric
model is a natural extension of sigmoid belief networks [2], a type of neural net-
work. The key contribution of this work is to combine the structure of neural
networks with the SSMM model, which results in a flexible parametric model
with enhanced generalization capability.

The paper is organized as follows. In section 2 we build up the Bayesian
framework for SSMM, and propose the parametric model for the likelihood.
In section 3 we present the results of numerical experiments. We conclude in
section 4.

2 Bayesian Framework

For a sequence of n amino acid residues, denoted as R = [R1, R2, . . . , Rn] with
Ri ∈ A where 1 ≤ i ≤ n and A is the set of 20 kinds of amino acids, its
associated secondary structure can be fully specified in the terms of segment
locations and segment types. The segment location can be identified by the
position of the last residue of the segment, denoted as e = [e1, e2, . . . , em] where
m is the number of segments, and the sequence of segment types can be denoted
as T = [T1, T2, . . . , Tm] with Tj ∈ T where T is the set of secondary structural
types. We use three segment types. H is used for α-helix, E for β-strand and C
for Coil. In Figure 1, we present a part of the primary sequence of the protein
2BRZ and its associated secondary structure as an illustration.

The segmental semi-Markov model (SSMM) [3] is a generalization of hidden
Markov models that allows each hidden state to generate a variable length
sequence of the observations. Now we follow the standard SSMM [6] [3] to set
up an explicit probabilistic model for sequence-structure relationships. Given
a residue sequence R, its associated secondary structures can be completely
defined by the set of random variables {m, e, T}. In segment modelling, the
segment types are regarded as the set of hidden discrete states. Each of the
segment types possesses an underlying generator, which generates a variable-
length sequence of the residues, i.e. the segment. A schematic depiction of the
SSMM is presented in Figure 2 from the perspective of generative models, while
a Bayesian framework will be described with more details in the following.

2.1 Prior Distribution

Let us specify a prior distribution P(m, e, T ) for the variable set of secondary
structures. Usually P(m, e, T ) is factored as

P(m, e, T ) = P(m)P(e, T |m) = P(m)

m∏

i=1

P(ei|ei−1, Ti)P(Ti|Ti−1) (1)
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Figure 1: Presentation of the secondary structure of the protein 2BRZ in
terms of segments. The square blocks denote the amino acid residues, and
the rectangular blocks with solid borders denote the segments. The graph rep-
resents the residue sequence R = [D,K,C,K,K, V, Y, . . .], the segment types
T = [C,E,C,H,C, . . .] and the segment endpoints e = [3, 6, 19, 28, . . .].
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Figure 2: The segmental semi-Markov model illustrated as generative pro-
cesses. A variable-length segment of observations is generated by the state Ti

associated with random length li. The dotted rectangle denotes the depen-
dency window for the residue Rn−1. The residues within a segment need not
be fully correlated, while there might be dependencies between the residues in
adjacent segments.

where the segment type only depends on the nearest previous neighbour in the
sequence.1 The state transition probabilities P(Ti|Ti−1) are specified by a 3×3
transition matrix. P(ei|ei−1, Ti), more exactly P(li|Ti) where li = ei − ei−1, is
the length distribution of each segment type. An improper uniform prior can
be assigned for P(m).

2.2 Likelihood

Holding the assumption of segmental independence, the probability of our ob-
servations can be simply evaluated by

P(R|m, e, T ) =

m∏

i=1

P(R[ei−1+1:ei]|ei−1, ei, Ti) =

m∏

i=1

P(Si|Ti) (2)

where Si = R[ei−1+1:ei] = [Rei−1+1, Rei−1+2, . . . , Rei
] denotes the i-th segment.

More generally, we can allow for dependency between residues in adjacent seg-
ments, and then the likelihood of the residues becomes

P(R|m, e, T ) =

m∏

i=1

P(R[ei−1+1:ei]|ei−1, ei, Ti, R[1:ei−1]) =

m∏

i=1

P(Si|Ti, S−i) (3)

1e0 = 0 is introduced as an auxiliary variable.
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Figure 3: The graph of helical capping signals. The grey residues are of the N-
and C-terminal positions for the α-helical segment, while the light-grey parts
are internal.
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Figure 4: The graph of the parametric model for helical capping and segmental
dependency with the window length ` = 4. For the residue N, W 0

N3 is used for
the local contribution to capture the information at helical capping position N3,
W 1 and W 2 are used for the contributions from intra-segmental dependency,
while W 3

A and W 4
A are used for the inter-segmental contributions.

where S−i = [S1, S2, . . . , Si−1]. The specific formulation of the segment likeli-
hood P(Si|Ti, S−i) should capture the core aspects of protein secondary struc-
ture, such as hydrophobicity patterns2, helical capping signals3 etc.

Schmidler et al. [6] proposed a helical segment model to capture position-
specific preferences and dependency of intra-segmental residues, which used a
lookup table with 3×3` free parameters where ` is the length of the dependency
window. We note that the lookup table is somewhat inadequate to general-
ize the dependency between residues, and the number of free parameters is
exponential with the window-length `.

Motivated by the structure of belief networks [2], we propose a paramet-
ric model for segmental likelihood evaluation. Weight matrices are introduced
to represent the statistical relations between residues. The position-specific
distributions are evaluated as local contributions W 0

p , a column vector with 20
elements, where p denotes capping or internal positions. Weight matrices of size
20×20 are proposed to capture both intra-segmental dependency, W 1, . . . ,W `,
and inter-segmental dependency, W 1

A, . . . ,W
`
A, where ` is the length of depen-

dency window,4 as shown in Figure 4. The residue Rk is denoted as a column
vector with 20 elements in which only one element is 1, indicating the amino
acid type, while others are zero. The segmental likelihood function in (3) can

2The 20 amino acids have varied physico-chemical properties. According to their chemical
properties, we may group the 20 amino acids into roughly three classes: hydrophilic, neutral
and hydrophobic. An α-helix exhibits periodicity in sequence hydrophobicity.

3Helical capping signals refer to the preference for particular amino acids at the N- and
C-terminal ends which terminate helices through side chain-backbone hydrogen bonds or
hydrophobic interactions (see Figure 3).

4The window length may be specified individually for segment types.
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be explicitly given as

P(Si|Ti, S−i) =

ei∏

k=ei−1+1

P(Rk|Ti, R[1:k−1]) =

ei∏

k=ei−1+1

exp(−RT
k · S(W ))

∑
R′

k

exp(−R′

k
T · S(W ))

(4)
where W is the set of weight matrices associated with the segment type Ti,
S(W ) =W 0

pk
+

∑`k

j=1 W
j ·Rk−j +

∑`
j=`k+1 W

j
A ·Rk−j with `k = min(k−ei−1−

1, `), pk denotes the capping position for the residue Rk, and
∑

R′
k

denotes the

sum over all the 20 possible residues. Note the linear relationship between the
number of free parameters and the length of dependency window. Moreover,
it is possible to further reduce the size of weight matrices to 3 × 3 by making
use of the hydrophobicity class.

2.3 Posterior Distribution

Using Bayes’ theorem, the posterior probability can be written as

P(m, e, T |R) =
P(R|m, e, T )P(m, e, T )

P(R)
(5)

where the normalizing factor P(R) =
∑

(m,e,T ) P(R|m, e, T )P(m, e, T ). In this
framework, we may consider some important measures of the segmental vari-
ables for an amino acid sequence [6], such as: 1. the distribution of the segment
type at each residue: P(TRi

|R) where we denote TRi
as the segment type at the

i-th residue, known as marginal posterior mode estimate; 2. the most probable
segmental variables: arg max

m,e,T
P(m, e, T |R), known as the MAP estimate. The

forward-backward and Viterbi algorithms for SSMM [3] can be employed for
the marginal posterior mode and MAP estimate respectively.

The parameters that specify discrete distributions can be directly estimated
by their relative frequency of occurrence in the training data set. The optimal
values of the weights in segmental likelihood can be estimated by maximum
likelihood.

3 Numerical Experiments

In this section, we report the results of numerical experiments. For a fair
comparison against the algorithm of Schmidler et al. [6], we used the reduced
3×3 weight matrices in the implementation of our approach. The length of the
dependency window is fixed at 5 for all segment types. We used 635 proteins
from the protein list generated by the PDB SELECT algorithm [1] that only
contains sequences with less than 25% sequence similarity,5 and obtained the
definition of their secondary structures from the data files of Protein Data Bank
(PDB). We randomly partitioned the 635 proteins into 30 folds, and recorded

5The list of the 635 proteins we used in the numerical experiments can be found at
http://www.gatsby.ucl.ac.uk/∼chuwei/biopss/pdbselect.id.
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Table 1: Validation results of Schmidler et al.’s algorithm and our approach for
secondary structure prediction. Qobs = TruePositive

TruePositive+FalseNegative
and Qpred =

TruePositive
TruePositive+FalsePositive

. Q3 denotes the overall accuracy.

Schmidler et al. 3× 3× 5
MODE MAP MODE MAP

Q3 66.89% 61.70% 67.49% 62.05%
Qobs

H
70.13% 70.77% 72.28% 71.70%

Qobs
E

46.51% 24.69% 46.86% 23.96%
Qobs

C
73.29% 70.52% 72.64% 70.86%

Q
pred

H
69.42% 63.02% 69.69% 63.36%

Q
pred

E
60.11% 60.84% 60.70% 61.81%

Q
pred

C
67.02% 60.72% 67.85% 60.97%

the validation results in Table 1. The results obtained from our model show a
modest improvement over those of Schmidler et al. [6] on all evaluation criteria.

4 Conclusion

In this paper, we proposed a parametric likelihood function for Bayesian seg-
mental semi-Markov models to capture the inter-residue dependency in protein
sequences. The results of numerical experiments in secondary structure pre-
diction verify the feasibility of this approach. With the infusion of multiple
sequence alignment profile or position-specific scoring matrices, the parametric
model we have proposed would result in improved prediction accuracy.
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