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Abstract. In most ICA algorithms, the separation performances are esti-

mated through the evaluation of a contrast function Φ, used in the update

rule of elements of the unmixing matrix. In particular situations, optimiz-

ing Φ does not lead to optimize the extraction of each source, one by one.

However, in some applications, one can be interested in quantifying the ex-

traction performances of a specific signal. In this paper, we emphasize that

none of the usual Φ’s could be directly applied, without further precautions,

to evaluate the performances of the local separation.

1 Introduction

Blind Source Separation (BSS) consists in recovering m independent sources (s =
[s1, . . . , sm]T ) only from n ≥ m mixtures of them (denoted by x = [x1, . . . , xn]T ).
If n > m, these observations must be projected to an m-dimensional subspace.
In the case where the mixture is linear, instantaneous and noiseless, we have:
x = As. This problem can be solved by Independent Component Analysis (ICA),
which allows to recover estimates of the sources: y = ŝ = Wx ' PDs, where
y are the outputs of the algorithm, P and D are a permutation and a diagonal
matrix, respectively. In ICA algorithms, sources are recovered when a contrast

function Φ (CF) is maximized. In order to achieve this, update rules for W were
derived. Indirectly, the evaluation of Φ at the final step of the algorithm can be
seen as a measure of the global separation performances (GSP). Nevertheless, in
some situations, maximizing the GSP does not imply that each source is separated
in the best way, and one may be interested in extracting a particular signal as well
as possible (for denoising applications, fetal electrocardiogram extraction, etc.).
This is the reason why a local separation performance (LSP) estimator could be
useful. How can we identify when a specific source ŝi is as close as possible from
the associated source si without using the original sources s, which are -supposed
to be- unknown ?
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In this paper, we recall the link between ICA, independence and nongaussianity;
The most used CF’s are recalled. Next, we discuss on the feasibility of using such
classical global CF’s as an estimator of LSP. Some simulations results are given in
section 4, before a conclusion.

2 Independence and Nongaussianity

2.1 Independence as a GSP estimator

To derive CF’s, some authors have used the main hypothesis on the si : they
are mutually independent. This implies that the product of the marginal density
functions fsi

(si) (pdf’s) equals the joint density function fs(s) (jpdf) of the sources.
Below, we detail the CF’s based on the cancellation of the higher-order cumulants
and on mutual information.

2.1.1 Higher-orders cross-cumulants (JADE)

It is well-known that signals yi and yj are uncorrelated if their covariance is zero, im-
plying that E{yiyj} = E{yi}E{yj}. Independence requires that E{gi(yi)gj(yj)} =
E{gi(yi)}E{gj(yj)} for any gi non-linear function (cross-cumulants of all orders
must be null). Whitening cancels the cross-cumulants up to two (uncorrelated-
ness), and JADE [1] diagonalizes the tensor of 4th order cumulants Cijkl(y), which
is in practice a good approximation of independence. The CF used in JADE is
defined as: ΦJade

.
= −

∑

ijkl 6=ijkk C2
ijkl(y).

2.1.2 Mutual Information (Infomax - Infomut)

The Infomax algorithm, derived by Bell and Sejnowski relies on the Linsker’s prin-
ciple [2]. Sources are recovered by maximizing the mutual information I(y,x)
propagated in a network (parameterized by ω) of inputs x and outputs y. Ac-
tually, the authors prove that this could be reached by the maximization of the

joint entropy h(y) between outputs: ∂I(x,y)
∂ω

= ∂h(y)
∂ω

. Applying directly this prin-
ciple leads us inevitably to infinity by finding an arbitrarily large unmixing matrix
W [3]. Thus we prefer maximizing h

(

g(y)
)

instead of h(y), where [g(y)]i = gi(yi).
The gi’s are non-linear functions mapping R 7→ [0, 1] and increasing monotonously
(e.g. a sigmoid). It can be shown that the joint entropy is equal to the dif-
ference between the sum of the marginal ones and the mutual information [4]:
h
(

g(y)
)

=
∑m

i=1 h
(

gi(yi)
)

− I
(

g(y)
)

.
In theory, it is clear that maximizing the joint entropy of g(y) is not equivalent

to minimizing the mutual information between the outputs I
(

g(y)
)

. However,

in practice (even there exists no proof of that), maximizing ΦInfomax
.
= h

(

g(y)
)

seems maximizing ΦInfomut
.
= −I(g(y)) [5] for supergaussian sources1.

1An extended version of the algorithm (Extended Infomax) allows a good separation for sub-
gaussian signals as well. Furthermore, The CF of Infomax is equivalent to the Maximum Likeli-
hood Approach one [3].
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2.2 Nongaussianity as a GSP estimator

The maximum nongaussianity approach is based on two major results from infor-
mation theory [6]. First, the Central Limit Theorem (CLT) says that if u is a
sum of n random independent variables (n → ∞), each one having an arbitrary
probability distribution, then fu(u) tends to a Gaussian function. In other words,
it means that the pdf of a mixture is closer to a Gaussian than the pdf of each
independent variable involved in the mixture. Secondly, the Maximum Differential
Entropy of a Gaussian variable expresses the fact that a Gaussian variable xG is
the one (among all unbounded variables x) which has the highest differential en-
tropy for a given variance (σ2

x = σ2
xG

): h(x) ≤ h(xG) = 1
2 log(2πe)σ2

x, with equality
if and only if x is Gaussian. Combining those two principles, we can say that in
order to find one source, we have to find an output which minimizes entropy. In
the following subsections, we give CF’s to measure nongaussianity.

2.2.1 Kurtosis (MaxKurt)

The kurtosis κ(y) (∈ [−2,∞[) of a variable y tells us if fy(y) is spikier (super-

gaussian: κ(y) > 0) or flatter (subgaussian: κ(y) < 0) than the Gaussian pdf
(κ(y) = 0). The kurtosis is classically defined as: κ(y) = E{y4} − 3E{y2}2 .
For almost all non-Gaussian pdf’s, the kurtosis is strictly different from zero. For
example, |κ(y)| or κ2(y) could thus be used as a measure of nongausianity [6] of
fy(y): ΦKurt1

.
=

∑m
i=1 |κ(yi)| or ΦKurt2

.
=

∑m
i=1 κ(yi)

2.

2.2.2 (Neg)entropy (FastICA)

The Kullback-Leibler divergence (KLd, [4]) could be used to measure nongaussian-

ity in order to derive a CF: ΦKL
.
=

∑m
i=1

∫

fyi
(ζ) log

fyi
(ζ)

fxG
(ζ)dζ. Another criterion,

equivalent to this latter CF, was derived: the negentropy, noted J . The negentropy
of a variable yk is defined as the difference between h(xG) of variance σ2

xG
= σ2

yk

and the differential entropy of yk: J(yk) = h(xG)−h(yk) = 1
2 log(2πe)σ2

xG
−h(yk).

Actually, the exact computation of differential entropy and KLd requires a high
computational time, and the analytic expression of the pdf. Good approximations
of J were derived which considerably decrease the computational time. FastICA
[6] uses the following: Ĵ(yk) ∝ (E{g(yk)} − E{g(xG)})2, where g is a non-linear
function, chosen according to the input signals x. The aim of FastICA is the same
as MaxKurt: drive far away the pdf of the m outputs (estimated sources) yi from
Gaussian ones. The CF Φ of FastICA is the previous approximation of negentropy
applied to the output signals: ΦFastICA

.
=

∑m
i=1 Ĵ(yi).

The Minimum Marginal Entropy algorithm relies on these principles and on the
entropy power inequality [7]: h(x + y) ≥ max

(

h(x), h(y)
)

, where x and y are two
independent variables.

3 Towards a LSP estimator ?

As explained in the introduction, it could be interesting to measure the extraction
quality of each ŝk, one by one. Indeed, even if the GSP estimator indicate a failure
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Figure 1: Four original slightly dependent sources.

of the global convergence, a specific source could be quite well recovered. A natural
question is the following: If the previous contrast functions are used to measure the

GSP, could they also be used to estimate the quality of the separation of each source

independently ?

The CF’s based on independence are estimated between outputs, and are thus
not appropriate to estimate the LSP. On the other hand, algorithms based on
nongaussianity are intrinsically different: this criterion is measured on each signal.
The evaluation of each Ĵ(ŝk), h(ŝk) or κ(ŝk) seems thus to be a good - and easy -
way to estimate the LSP of ŝk.

Nevertheless, the independence assumption on the si’s is very critical. The
violation of this hypothesis implies that a mixture of the si’s is not necessarily
more Gaussian than each one taken separately: the nongaussianity of ŝk can no
more be linked to the correlation of ŝk with the associated source!

4 Simulations and results

In spite of a low dependence between sources, it happens in practice that the global
separation is satisfying, but in this case the evaluation of the local one -using the
same CF- could be irrelevant (see previous section). Here, we illustrate these
problems when global convergence is nearly reached. In the following simulations,
the output signals were ordered with respect to their correlation with the original
sources ρ(si, ŝi) (1 ≤ i ≤ m = 4), in such a way that the evolution of the separation
of each ŝi has sense.

Two cases are analyzed: four random (independent) signals and four slightly
dependent sources (non-zero correlations, see Figure 1) are mixed, the mixtures
being polluted by uniform noise (resp. SNR = 32dB and SNR = 60dB, where

SNR is defined as SNR = 10 log
(

σ2

signal

σ2

noise

)

). Note that the absolute value of the

correlation coefficients for the independent sources is bounded by 0.02 and for the
slightly dependent sources, this maximum is 0.08.

We give results of simulations using ΦJade. We have plotted the evolution of
each ρ(si, ŝi), h(ŝi) and κ(ŝi) versus n the number of inputs xi randomly chosen
(among a set of 15 available noisy mixtures) projected by PCA on a 4-dimensional
subspace, as explained in the introduction. As the mixtures are noisy, the infor-
mation contained in n > 4 observations is useful to extract the original sources.
For the random sources (Figure 2), h(ŝi) and κ(ŝi) give the same information as
ρ(si, ŝi). However, the LSP estimation of the low-dependent sources through the
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Figure 2: Four uniform independent sources mixed with additive noise on the mix-
tures: evolution of correlations (between orignal and associated estimated source),
h(ŝi) vs n and −κ(ŝi) vs n the number of observed signals considered.

entropy or the kurtosis is not reliable, as shown the comparison with the correlation
curves (see Figure 3, columns 2 and 3).

5 Conclusion

When the assumptions on the model are respected, the global separation leads to
the optimization of the extraction of each source. However, in real-world appli-
cations, the model of ICA is rarely fully respected. For this reason, it could be
interesting to identify when a specific source is extracted in the best way, especially
in the particular case where the hypothesis of statistical independence between the
sources is violated (e.g. how blindly chose n = 10 -the optimal value of n for the
extraction of the third source- in Figure 3 ?). We have shown that in such cases, the
usual CF’s in ICA are not able to estimate perfectly the quality of the extraction
of each source. Note that in many applications, the measure of the local separation
performance should be done on a specific signal (i.e. the desired source). This
identification requires an a priori knowledge on it (pdf, temporal structure, . . . ).
Other problems occur when convergence failed: if we observe between step t (where
it is assumed that ŝt

k ' sk) and step t+1 that h(ŝt
k) ≥ h(ŝt+1

k ), does it means that
sk is better recovered at step t + 1? Not necessarily: ŝt+1

k could become a mixture
of two low-entropic sources implying that h(ŝt+1

k ) ≥ h(y∗), with y∗ = αsp + βsq,
k 6= p 6= q and even for σ2

ŝk
= σ2

y∗ !

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 211-216



Figure 3: Four original slightly dependent sources (shown on Fig. 1) mixed with
additive noise on the mixtures: evolution of correlations (between orignal and
associated estimated source), h(ŝi) vs n and −κ(ŝi) vs n the number of observed
signals considered.

Despite these problems, it must be stressed that the contrast functions used in
the previous section seem to be very convenient (under constraint that the sources
are mutually independent), even if the mixtures are noisy. Indeed, each correlation
curve ρ(yi) (the ideal criterion of source extraction, but not blind), is directly linked
to the evolution of these contrast functions Φ(yi).
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