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Abstract. This paper presents a few applications of neuro-fuzzy systems
to tribology. Classification and prediction act on a highly dimensional input
space, posing severe problems of generalization capability and reliability of
results. The paper shows how the major problems have been solved for the
specific application domain.

1. Introduction

Tribology (namely, the science and technology of friction) is a tough discipline, due
both to the large number of parameters involved in technological processes and to
the strongly non-linear influence of the various chemical components and techno-
logical parameters onto the characteristics and performance of final product(s) (for
instance, car brakes). This work has been sponsored by ITT Galfer (I).

2. Problem Description

A typical manufacturing process of a friction material involves:

e mixing a large number of basic components (among which: different types
of rubbers, different types of lubricants, different types of metals and a few
other materials);

e processing the mixture through a number of technological steps (among which:
pressing, heating, baking, cooling, etc.);

e giving the material the desired shape and testing.

The actual composition (that is, the percentage of each component) and the
actual sequence of technological steps (for instance, time, pressure and temperature
at each step) heavily affect performance of final product, with a heavily non-linear
and mostly unknown relationship. The knowledge about this relationship is mostly
acquired through direct experience and is usually traded among experts.
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As a consequence, finding the best composition is mostly left to the know-how
of human experts and is based on a trial-and-error approach, which is rather time-
consuming (manufacturing and testing of a new material may take up to several
months), quite costly, error-prone and often misleading. Furthermore, the high
dimensionality of the problem causes such a tremendously high size of input space,
which is far from being explored completely.

2.1. Problem Encoding and State of the Art

A given friction material is encoded (that is, completely defined) with a 67-dimen-
sional input pattern X' , which contains the concentration of 25 basic components
and 12 technological parameters, as described above. Performance of a material is
expressed as a 2-dimensional output pattern }7, which contains the friction coeffi-
cient and wear of the manufactured material (there are assessed after a two-days
long testing).

At present, the development of a new material is based on a trial-and-error
approach, which requires: i) to empirically define a new chemical composition and
technological parameters (based on prior know-how and experience of a few human
experts); ii) to manufacture the material and iii) test it according to a standardized
procedure; iv) modify either chemical composition or process parameters with the
aim of increasing performance; v) loop until requirements are met.

The major problem is that manufacturing and test is time consuming (about
three days per each new composition), therefore costly, while the probability of
success (that is, the chance that a given new composition meets the specifications)
is rather low, therefore a large number of trials and tests has to be done, causing
a very long time-to-market and high development costs.

In addition, one of the performance figures (namely, friction coefficient) is not
a unique value, as friction heavily depends on working conditions and on the his-
tory of the material (namely, the sequence of past working conditions). In most
cases, an average value is used, but this is far from identifying the performance
unambiguously.

2.2. Aims of the Work
Aims of the activity were manifold:

1. to develop an accurate empirical model to estimate, with a reasonable confi-
dence, the performance of a given material, without manufacturing it. This
would significantly reduce the development time and cost of any new material,
by substituting a three-days manufacture-and-test step with a few-minutes
model estimation, provided that the reliability of the model is high enough;

2. to use and validate the model as an aiding tool in a decision-making process,
so that the expert who is willing to try a new material may have a quick
feedback about the estimated performance of the new compound;
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. to use the model in an automatic optimization process, to automatically find a

composition which improves a given cost function (mostly, either performance
figure, or both of them);

. to extract knowledge from the model to understand the effects onto perfor-

mance of each chemical component and process parameter and to interpret
the physics which lays behind tribology;

. to find a parametric model of friction as a function of working conditions,

such that the model parameters can be used instead of the average value to
identify the characteristics of the material more accurately. A side-effect of
this would be to produce a more reliable identification of the material, which
is a further step toward manufacturing quality;

to extract knowledge from the latter model, in order to predict the behavior
of the material under critical working conditions;

to force standardization, therefore quality, of the manufacturing process, as
it is required to have homogeneous and comparable process parameters and
testing procedures.

Preprocessing

As a first step, input/output patterns are preprocessed to:

1.

reduce dimensionality of input space, by manually gathering together “sim-
ilar” chemical components into homogeneous groups (for instance, all soft,
medium and hard rubbers) and summing up the concentration of components
in the same group. A 19-dimensional reduced input vector X is obtained.
In the preliminary study, a crisp grouping has been done manually, based
on human experience and on reasonable assumptions. Later, an automatic
process has led to a fuzzy grouping with better performance, as described in
sect. 4.3..

Dimensional reduction is often achieved by means of PCA, which is used to
find the directions in input space where most patterns are located. Yet we
have decided not to use PCA for dimensional reduction, as this has been used
for other purposes (see sect. 5.1.) and a double use of it might cause undesired
effects. We will try in a future work to apply PCA also for preprocessing;

the first step of component grouping has caused some input patterns to be-
come similar to each other (for instance, two patterns with a different per-
centage of two components from the same group may have an identical sum
of partial concentrations). Yet a number of similar (or identical) patterns
would cause an undesired stronger effect of these on training. We have there-
fore decided to remove all similar patterns, by analyzing the relative distance
from each other;
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Figure 1: Frequency histogram of the
19 components of input vectors and the
2 components (last two plots) of out-
put vectors vectors, both before pre-
processing.

Figure 2: Laterality factor of the 19
components of input patterns.

3. removing outliers, which are likely due to defective measurements or anoma-
lous process runs. Qutliers are identified by verifying whether all components
of input/output pattern lie within reasonable bounds. These bounds (called
Zi max and Zi min) have been determined by manually analyzing the frequency
histograms of all components (see fig. 1);

4. computing, for each component of input/output vector, the laterality factor
(see fig. 2):

Ti,max + Zi,min

oL = ——————

Zi,max — Ti,min
which expresses how much each component of input and output patterns is
distributed symmetrically around the origin. If values are distributed sym-
metrically around origin, then ay,; &~ 0 (we have no such cases), while if they
are distributed between #; min = 0 and an upper bound, then ar,; = 1 (most
of our components), but if they are too biased (that is #i max & i,min, then

ar,; = oo (for instance, components 3, 5, 6, 11).

5. as all components are unilateral (that is, ar,; > 1), we normalize each com-
ponent of input/output pattern to the range [0,1] (static normalization);
bilateral components (that is, ar; ~ 0) would rather be normalized to the
range [—1,1];

6. removing immaterial input components, that is, all those with nearly null
standard deviation (that is ar; > 10; a few of them were present in our
study, but these were removed before plotting fig. 1 and fig. 2).

By doing so, we were left with a set of 19-dimensional, normalized, unilateral,
input pattern and the corresponding set of 2-dimensional, normalized, unilateral,
output pattern.
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After preprocessing, the number of available patterns (about 67) was tremen-
dously low compared with the dimensionality of input space (19!). This caused
heavy criticalities in training and bounds to accuracy. A mixture of neural net-
works and fuzzy logic has been used to achieve the best results, even with such a
limited number of training patterns, as described in next sections.

4. Modeling Friction and Wear

The first aim of this work has been to develop an empirical model of friction and
wear versus chemical composition and technological parameters. We have used a
19 x H x 2 two-layers neural network of order n = 9, Gaussian, on the first layer
and order 0, linear, on the second layer [1], with a normalization layer in between.
More precisely, an WRBF-9(Gaussian)-NORM-1/1-WRBF-0(linear), that is:

2
P wf-k b ( VY. (w}“.(z,-—c,c,-))")

Ek P

where wjl-h and w?, are the weights of the first and second layer, respectively, while
cr; and the centers of the first layer. Activation functions are Gaussian on the first
layer and linear on the second layer, while the order n' of the first layer has been
chosen equal to 9 to reduce the curse of dimensionality, as commented in sect. 4.4..

As the number of training patters was so low, we decided not to train the
network (it would likely not be successful with so few patterns), but to use a direct
initialization. We therefore:

(1)

7 = f()?) = where h; = e_

1. centered one first-layer neuron on each training pattern (that is, as many
hidden neurons as training patterns). Therefore:

Ch=Xs
where Xg is a matrix whose columns are all the training patterns;

2. first-layer weights were fixed: wj, = wo;

3. the second-layer weights were initialized by means of linear optimization, as
in RBF networks:
W*=Ys-Hs '

where Y5 is a matrix whose columns are all the training output patters, while
Hg is a matrix whose columns are all the corresponding hidden vectors.

This builds up a non-linear interpolator, which interpolates output values in
between the known values (training patterns). By applying a new pattern (that is,
a new compound) at the input of the network, this tries to predict the corresponding
values of friction and wear.
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Figure 3: Results of the leave-one-out validation of neural model. Continuous line
joins the 67 values in the training set, while the crosses show the estimated value
of each left-out pattern.

4.1. Establishing Model Reliability

In the beginning, model reliability has been assessed with a leave-one-out approach,
by: i) removing one pattern from the training set; ii) building the network based
on the remaining patterns; iii) testing the network on the removed pattern, by
computing the estimation error; iv) put back the removed pattern and remove
next one; v) repeat for all patterns and average quadratically the corresponding
estimation errors. Results are shown in fig. 3, while the average estimation error
is shown in tab. 1 for different values of the first-layer weights wg. It can be seen
that wg = 11 is a reasonable compromise.

It is clear that most patterns would be predicted correctly only on the basis of
the knowledge acquired from the others. Results were considered excellent, except
for the last few ones (at the right hand side of plot), for the reason outlined in
sect. 5.1..

4.2. Process Sensitivity

Once the model has been validated (see sect. 4.1.), we have tried to use it to assess
the effect of each concentration or process parameter on performance, by trying to
evaluate the sensitivity of each performance index (j) versus each component (%)
of input pattern:

& 2 A 09(X)

Sii(X) =

J’l( ) 61}1

Since the model is rather non-linear, we computed the sensitivities around a given
composition. We have selected one of the best available materials, as there was
no reason to optimize a poor material. Figure 4 (respectively, fig. 5) shows the
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avg. error | avg. error | avg. error | avg. error | avg. error | avg. error

wo | (friction) (wear) (friction) (wear) (friction) (wear)
n=2 n=9 n =37

1 0.6964 0.3981 2.9200 15.4713 1.3542 5.3678

3 0.2527 0.3447 1.2763 3.3762 6.7618 2.7368

) 0.2393 0.3651 2.1615 0.7584 0.4563 0.6840

7.5 0.2283 0.3632 0.1917 0.4159 0.2050 0.4264

9 0.2258 0.3638 0.1870 0.4165 0.1933 0.4273

11 0.2233 0.3655 0.1831 0.4174 0.1854 0.4313
15 0.2184 0.3700 0.1787 0.4241 0.1775 0.4402
20 0.2149 0.3755 0.1762 0.4350 0.1736 0.4452
30 - - 0.1741 0.4505 0.1736 0.4480

Table 1: Normalized estimation error for different values of first-layer weights.
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Figure 5: Estimated wear as a function
of the first 12 components of input pat-
terns, computed around a given mate-
rial, which is at center of each plot.
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Figure 4: Estimated friction as a func-
tion of the first 12 components of input
patterns, computed around a given ma-
terial, which is at center of each plot.

sensitivities of friction (respectively, wear) with respect to the first 12 components of
input pattern. These plots have been used to point out which were the parameters
which most affected each performance. For instance, it can be seen that third
component significantly affects wear (showing an extreme around a given value),
but has nearly no effect on friction.

4.3. Automatic Grouping

We mentioned in sect. 3. that dimensionality of input patterns has been reduced
by manually gathering chemical elements into homogeneous groups. Homogeneity
was defined according to reasonable human considerations, but there was no clue
that this was the optimal grouping, that is, that which increases model accuracy,
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Grouping can be defined by means of a grouping matriz M such that
X =MX'

where X' is the ungrouped vector containing concentrations of all chemical element
and process parameters, while X is the input pattern for the neural model, with
grouped components.

For manual grouping, grouping matrix M has a 1 on j** row and i** column
if and only if chemical element i is placed into group j. There has to be one and
only one “1” in each column, as each chemical element can be associated with one
and only one group.

We have then developed three automatic techniques to group chemical elements
together:

o crisp empirical grouping, which consists of generating a number of random
grouping matrices, with the only constraint that there has to be one and
only one “1” in each column (see above). The best matrix is then chosen as
described later;

o fuzzy empirical grouping, which consists of generating a number of random
grouping matrices, with the only constraint that the sum along each columns
shall always be 1. Each chemical element can therefore be a partial member
of more groups. The best matrix is then chosen as described later;

o tlraining grouping matriz: the grouping matrix M can be seen as an additional
layer at the input of the neural model, building up a (25+12) x 19x H x 2 three-
layers neural network of type WRBF-0(linear)-WRBF-9(Gaussian)-NORM-
1/1-WRBF-0(linear). This three-layer neural network (therefore also the
grouping matrix) can be trained with a traditional backpropagation rule,
using the RMS error on training set as cost function.

The best matrix is then chosen (except for the third approach), namely the one
which reduces estimation error with the leave-one-out approach (see sect. 4.1.).
Generalization capability of the resulting grouping matrix will be verified with
empirical results, after a longer process of manufacture and test of samples, which
is still going on.

4.4. Reducing the Curse of Dimensionality

The curse of dimensionality is reduced by finding the optimal order n of the Gaus-
sian layer. A theoretical analysis (not reported here) pointed out that a good
candidate was n = 9, as used so far. We have also verified this assumption by run-
ning the leave-one-out approach with different values of n, as reported in tab. 1,
which confirmed the theoretical assumptions.
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Figure 6: A subset of the Pareto surface (wear vs. friction) estimated around a user-
selected material. The circles indicate the existing materials. The intersection of
the horizontal and vertical axes indicate the user-selected material (one of the best
available), while the crosses indicate the estimated performance on a small number
of random point (we plotted only 100 points to improve clarity, although in practice
we computed about 10,000 points). All points which are in the first quadrant with
respect to the axes are potential candidates for an improved material.

5. Pareto Optimization

Another application of the proposed model, somehow similar to the analysis of
sensitivity described in previous section, is the portion of Pareto surface shown in
fig. 6. The idea is: i) to supply to the neural model a large number of random input

patterns X P; ii) to estimate performance y; (X P), based on the model of formula
(1); iii) to plot estimated wear (in practice, the inverse of wear) versus estimated
friction, for each random input pattern; iv) to select the random point(s) which
maximizes both performance figures.

If the model were accurate and an infinite number of points covering the whole
input space were supplied to the network, the resulting plot would be the Pareto
surface of friction materials, which could then be used for multi-objective optimiza-
tion, as shown in fig. 6. For instance, random points which have a better friction
coefficient and a reduced wear (note that the plot shows the inverse of wear, which
should be maximized) are candidates for an improved material. The best ones can
then be manufactured and tested.

In practice, the model has a limited accuracy and the number of points is
necessarily limited, therefore the resulting plot is nothing but a very small subset
of the Pareto surface, mostly centered around a user-selected point (usually, one of
the best available materials), for the reasons which will be explained in sect. 5.1..
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5.1. Bounds on Modeling Reliability (Explored Subspace)

A few new materials have been manufactured and tested according to the results
of the Pareto-like neural optimization described above. Results are shown in fig. 3,
where the first 70 materials were those manufactured before starting this work,
while the last four were those manufactured according to the Pareto-line neural
optimization.

Results were not good, as the prediction capability of the model for these “new”
points is much worse, which means that the model was very reliable to predict
previously existing materials but it was not so reliable in predicting performance
of new materials (namely, poor generalization capability), despite the indications
of the leave-one-out validation (see sect. 4.1.).

We have deeply analyzed the reasons for this behavior, namely under what re-
spect the “new” points were different with respect to the “old” ones. We pointed
out that available materials could definitely not cover all input space, due to its
large dimensionality, therefore we analyzed the principal components, that is, the
regions in the input space where input pattern were more concentrated, therefore
where the available “knowledge” was concentrated. Figure 7 shows standard devi-
ation of the principal components of training set, in decreasing order, from which
is can be seen that six components contain most of the knowledge.

We also pointed out that, since the new points were randomly distributed,
they were likely to be in an “unknown” direction, that is, a direction in which
no knowledge (namely, no old material) was available. It is reasonable to believe
that generalization capability might be high along principal components and lower
along the other directions in input space.

We therefore used results of PCA for three purposes:

1. to outline the unknown areas of input space, that is, the least principal compo-
nents. No knowledge was available along these directions, that is, either no or
very few materials have ever been manufactured and tested (by this industry)
with those particular compositions. This analysis therefore provided valu-
able indications on unezplored compositions, which were worth being tried,
although no indication whatsoever could be available on the performance
which might be expected;

2. to outline the reliability bounds of the model, that is, the directions in input
space where the neural model is reliable. This indications has been used in a
second phase of the work to restrict the subspace in which random points were
generated for the Pareto-like neural optimization. This explains why we have
decided to restrict random points within a hyper-ellipsoid centered around
a user-selected point (usually one of the best available material) with the
axes oriented along the principal components and the radiuses proportional
to the corresponding standard deviations, as shown in fig. 6 and described
in sect. 5.. This has significantly improved the reliability of the suggested
compositions (results are not shown in fig. 3);

3. to reduce the size of the neural model, although results are not yet available.
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Figure 7: Standard deviation along the principal components of training set, in
decreasing order.

6. Fuzzy Interpretation of Acquired Knowledge

Once the neural model has been validated via a number of experimental tests, the
knowledge which the model has acquired has been converted into a set of fuzzy
rules, which were readable by a human expert. We therefore converted the neural
networks into a set of Mamdani fuzzy rules of the form:

R' : IF (z is small) AND (z5 is medium) AND ...

... THEN (y; is large), (y2 is medium)

by means of the automatic conversion method described in [1]. We cannot report
the whole set of rules, as they are confidential.

It is clear that the fuzzy model has the same validity bounds of the neural model
(as the two are identical), therefore knowledge is mostly concentrated within the
hyper-ellipsoid defined by PCA analysis (see sect. 5.1.).

7. Conclusion

This work has presented an application of neuro-fuzzy networks to tribology, show-
ing how the many problems caused by the large dimensionality of input space have
been solved. The paper has also outlined how the same neural model, which has
been developed, has also been used for a number of different purposes.

In conclusion, results were considered encouraging, mostly for the following
reasons:

e 1o reliable model was available so far for the problem under consideration.
The model we have developed in this work has therefore increased the knowl-
edge on the manufacturing process;
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e the model developed significantly reduces development time of new materials,
by giving quick indications whether a new composition has some chance to
offer good performance;

e the model will be used in a decision-making process, to assist the human
expert in the process of optimizing material performance;

e this work and all surrounding activities have outlined a few weaknesses of
the testing and database management procedures, which are currently being
solved for the future.
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