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Abstract. In this paper, we propose a new recursive neural network
model, able to process directed acyclic graphs with labelled edges. The
model is based on a different definition of the state transition function,
which is independent both from the number and the order of the children
of each node. In fact, the particular contribution of each child is encoded
in the label attached to the corresponding edge. The computational
capabilities of the new recursive architecture are also assessed.

1 Introduction

Recursive neural networks are a connectionist model [1, 2, 3] particularly suited
to process Directed Positional Acyclic Graphs (DPAGs). In the case of DPAGs,
each arc starting from a node has an assigned position, and any rearrangement
of the children of a node produces a different graph. While such an assumption
is useful in some applications, it sometimes introduces unnecessary constraints
on the representation. For example, this hypothesis is not suitable when repre-
senting a chemical compound or a protein structure, and might not be adequate
in several pattern recognition problems.

The concept of invariance or symmetry has emerged as one of the key ideas
in many different areas, such as physics, mathematics, psychology, and engi-
neering [4]. From a theoretical point of view, seminal contributions in permu-
tation invariant algebras can be found in [5, 6]. Significant applications are in
computer vision [4, 7], in signal theory [8], and in pattern recognition [9, 10].
Even in the neural network research field, there have been some attempts to
construct application—specific architectures, permutation invariant w.r.t. the
inputs. Invariance is often realized with preprocessing [11, 12], or via the ex-
traction of features which are invariant under input transformations [13]. Oth-
erwise, ad hoc network models are used, to preserve the output under particular
input transformations [14, 15].

In this paper, we present a novel recursive neural network model, able to
process Directed Acyclic Graphs with Labelled Edges (DAGs-LE). At each
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node of the structure to be learnt, the state transition function is independent
both from the number and the order of the children. In fact, the particular
contribution of each child is encoded in the label attached to the corresponding
edge. The paper is organized as follows. In the next section, some notation is
introduced whereas, in Section 3, the novel recursive model is described. In Sec-
tion 4 some theoretical results are shown in order to assess the computational
power of the model. Finally, conclusions are drawn in Section 5.

2 Notation

Let G = (V, E, L) be a directed graph, where V' is the set of nodes, E CV xV
represents the set of arcs, and £ : V — L, is a labelling function, being
L, C R™ a finite set of labels. Given any node v € V, pafv] is the set of the
parents of v, while ch[v] represents the set of its children. The outdegree of v,
od[v], is the cardinality of ch[v], and 0 = max, od[v] is the maximum outdegree.
Each node stores a set of domain variables into a label. The presence of an
edge (v,w) in a labelled graph stands for the existence of a causal link between
the labels of v and w. Moreover, for recursive processing, GG should have a
supersource, i.e. a node s € V with no incoming edges, and from which any
other node in V' can be reached. The supersource s may eventually be added
following the algorithm in [3].

In this paper, we consider the class of Directed Acyclic Graphs (DAGs),
where a partial ordering can be defined on V', such that v < w if v is connected
to w by a direct path. Directed Positional Acyclic Graphs (DPAGs), for which
recursive networks were originally defined, are a subclass of DAGs, where an
injective function o, : ch[v] — {1,..., 0} assigns a position 0,(c) to each child ¢
of a node v. Therefore, a DPAG is represented by the tuple (V, E, £, O), where
O = {o1,...,0y|} is the set of functions defining the position of the children
for each node. Finally, the definition of the class of DAGs with Labelled Edges
(DAGs-LE) requires the introduction of an additional edge labelling function
&, such that G = (V, E, L,&), where £ : E — L., and L, is a finite subset of R*.
The presence of an edge label introduces some semantical contents into the link
between two nodes (e.g., when the nodes represent two adjacent regions in an
image, the label can collect some information on their respective positions [16])

3 Processing DAGs with labelled edges

Recursive neural network (RNN) models proposed so far have been devised
to deal with DPAGs. In this case, the state transition function f takes into
account the order of the children of each node, because the state of each child
occupies a particular position in the list of the arguments of f. In [14], a weight
sharing approach was proposed, to relax the order constraint, which allows to
assess that RNNs are universal approximators also for DAGs (with a bounded
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outdegree). Unfortunately, such method cannot be applied to DAGs with a
large outdegree o, due to the factorial growth in the network parameters w.r.t. o.
Even if the maximum outdegree can be bounded during a preprocessing phase,
for instance by pruning those connections that are heuristically classified as
less informative, nevertheless some important information may be discarded in
this way. Such drawbacks can be removed when considering DAGs-LE.

For DAGs-LE, a state transition function f can be defined which has not
a predefined number of arguments and that does not depend on their order.
The different contribution of each child depends on the label attached to the
corresponding edge. At each internal (not a leaf) node v, the total contribution
X(ch[v]) € RP of the state of its children is computed as

[ch[v]] / &
< 1 (9)
X(Ch[’l}]) = |Ch[’l}]| Z ZHjL(Z)7chi[v]) Xchi[v] (1)
Jj=1

i=1

where Ly cn;[o]) € R* is the label attached to the edge (v,ch;[v]), and H €
RP™F is the weight matrix. In particular, H; € RP™ is the j—th layer of
matrix H and Lgi)chim) is the j—th component of the edge label. Finally, the

state at a generic internal node v is computed by a two—layer perceptron with
linear outputs, as

X, = f(X(ch[v]), Uy, 05) = V#(AX(ch[v]) + BU, + C) + D (2)

where o is a sigmoidal function, 9f~ collects A € R??, B € R?™, C € RY,
D € R", and V € R™?, being ¢ the number of hidden units. The state of the
leaves is conventionally fixed to the frontier state Xp. At the supersource, also
an output function g is evaluated by a feedforward network,

Y =g(X;,05) = WGF(EX; + F) + G
withE€RY ", FeR?,G eR", and W € R .

Remark 1. In the more general case, X(ch[v]) may be computed using a
nonlinear function ¢ : R("*%) — R?, depending on a set of parameters Oy

|ch[v]|
X(Ch['[}]) = |Ch['U]| 1:21 ¢(X(‘hl[v]7L(v,(‘hl[v])50¢)

4 Theoretical results

In Section 3, egs. (1)—(2) describe how to compute the state of a node v, starting
from the contribution of its children and independently of their number and
order. In the following lemma the feedforward architecture which computes
the transition function f is defined.
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Recursive Network for DAGs-LE
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Figure 1: An MLP implementation of the recursive network. Grey layers are
sigmoidal, whereas white layers are linear in both the feedforward networks.

Lemma 1. At each node v of the structure to be learnt, the feedforward network
which computes the state transition function f can be realized by a three—layer
perceptron, having H;, j =1,...,k, as input-to-hidden weight matrices.

Proof. Eq. (1) may be rewritten as

k |ch[v]|
< _ 1 (4)
X(chpe)) = |ch[v]| D H | D L (v chifo) Xens o]
j=1 i=1

which shows how the contribution of the children of each node to its state can be
computed using a three—layer perceptron with & inputs ZLC:hl[”” LEZ) )ch , [v])Xchi [v]5

j=1,...,k, and with H; as input—to-hidden weight matrices.

The recursive neural network for processing graphs with labelled edges (RNN-—
LE) is depicted in Fig. 1.

Even if the edge labels increase the semantical content attached to the links,
it is worth studying how such labels can be used to codify the order relationship.

Theorem 1. Each DPAG can be represented by a DAG-LE.

Proof. The assertion follows straightforwardly by observing that the position
of the i—th child can be encoded by an integer label attached to the link. In
particular, for each node in the DPAG, a corresponding node exists in the
DAG-LE, and the edge labels must have dimension o (being o the maximum
outdegree). Moreover, for each node of the DPAG the corresponding node in
the DAG-LE has o outcoming edges, with labels having all but one zero entries.
An entry equal to one stands for the presence of the child in a particular position
(in this case, the labels form the Euclidean basis of R?). The absence of a child
in a node of the DPAG implies the use of a predefined frontier state, Xp, as
the state of the corresponding child in the DAG-LE. (]
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Theorem 2. For any DPAG G and any standard recursive neural network
RNN with a transition function f, there exists a DAG-LE L and an RNN-LE,
with a transition function f such that f(G) = f(L).

Proof. Let us suppose to consider the standard RNN model in which, at each
node v, the state transition function f is computed using a two-layer percep-
tron, with sigmoidal hidden neurons and linear output neurons, in which the

matrices Ay, k = 1,...,0 weighs the input—to—hidden contribution of the state
of the children [14]. Then, the proof follows directly by choosing A - Hy = Ay,
in the RNN-LE. O

Finally, the following theorem assess the computational capabilities of the
RNN-LE architecture.

Theorem 3. Given a function t : DPAGs — R", a probability measure P on
DPAGs and any real €, there is a function h, realized by an RNN-LE, such
that P(Jh(L) —t(G)| > ¢) < .

Proof. The proof follows straightforwardly from the results in [17, 18, 19]. O

Remark 2. Since any DAG can be represented with a DPAG, by assigning an
arbitrary position to each child, the above results can be directly extended to
the class of DAGs.

5 Conclusions

In this paper, a novel neural network model, capable of processing DPAGs with
labelled edges, was introduced. The feedforward neural network that computes
the transition function has a three—layer architecture. The computational ca-
pabilities of the recursive model were also discussed, assessing that it works as
an universal approximator with respect to the classes of DPAGs and DAGs.
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