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DNA microarrays provide a powerful means of monitoring thousands of gene 

expression levels at the same time. They consist of high dimensional data sets which 

challenge conventional clustering methods. The data’s high dimensionality calls for 

Self Organizing Maps (SOMs) to cluster DNA microarray data. This paper shows that 

a precise estimation of the variables’ variances is, however, the key to successful 

clustering of such data with SOMs. We propose PDEplots to verify the estimation of 

variances. PDEplots are probability density estimations based on information optimal 

sets. This paper demonstrates the application of PDEplots for clustering DNA 

microarray data of leukemia with the U-Matrix. Our approach reveals new insights into 

the structure of the leukemia dataset: PDEplots show two different distributions in the 

raw data. Three new subclasses are found with the U-Matrix. 

 

1 Introduction 

Fast and accurate diagnosis is vitally important for cancer patients. With DNA 
microarrays a new tool has been developed which could lead to a new era in cancer 
diagnosis. The intrinsic problem of a typical data set produced by DNA microarrays is 
the small sample size and the high dimensionality of the data set. The leukemia data 
described in chapter 2 consists of expression values for 7192 genes from 72 patients. In 
such a constellation (high dimensionality and small sample size) we propose the use of 
Emergent Self Organizing Maps (ESOMs [1], [2]) with their ability of appropriately 
representing high dimensional structures and finding new classes. We have 
successfully applied ESOMs combined with the U–Matrix and the machine learning 
tool sig* to classification of DNA Array Data from neuroblastoma patients [2]. This 
paper gives an overview of the databionic methods and shows their usefulness on the 
leukemia data set. 
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2 DNA microarray data of leukemia 

The dataset we used for this paper consists of 7192 gene expressions (slides) for 72 
leukemia cancer patients (cases). It is publicly available on the internet from 
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi/. The dataset was produced using 
a high-density oligonucleotide Affymetrix chip. For every gene there is a quantitative 
expression value. There is an existing (clinical) classification of the data set into two 
groups: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). The 
discrimination between theses two types of leukemia is crucial because there are 
important differences in the treatment of ALL and AML. A supervised approach for the 
classification has been suggested by Golub et al [3] 

3 Estimation of dispersion for DNA microarray data 

Statistical methods for identifying differentially expressed genes as well as 
clustering methods require a precise estimation of the dispersion of the gene 
expressions (see [4] and [7]). In many studies the empirical variance s2 is used which is 
problematical for DNA microarray data. This can be seen using a PDEplot. 

PDEplots are plots of the probability density estimation using a special kernel for 
density estimation [5]. In Figure 1 a PDEplot of one patient’s gene expressions is 
depicted in comparison to a Gaussian distribution N(m,s) with m as empirical mean and 
s as empirical variance (dashed line in Figure 1). It can be seen that most of the values 
are located around zero. However there is a substantial proportion of very large and 
very small expression values (“fat tail” phenomena). The empirical means and variance 
therefore result in a highly inadequate description of the data set. 

In Figure 2 the variances of the gene expression values for each case of the leukemia 
dataset are displayed. It visualizes the problem described in the previous paragraph: for 
a meaningful comparison of the variables their variances have to be compensated. 

 

Figure 1 PDEplot of a gene expression 
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Figure 2 variances of gene expressions 
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Appropriate trimming methods and robust estimations for means and variances are 
necessary to get better estimates. This estimation derives the variance from the inter 
quartile range as follows:  )349.1,min( IQRss =)

 with the empirical standard deviation 
s and the inter quartile range IQR [6]. 

Using these methods for the estimation of location and dispersion the data can be 
normalized to mean 0 and variance 1. Figure 3 shows a PDEplot of the normalized 
expressions of all patients. The empirical Gauss (in dashed line in Figure 3) is a much 
better description of the data. 

 

Figure 3 PDEplots of the leukemia data set 

The PDEplots of the leukemia data set in Figure 3 show two different types of 
distributions for the gene expression values. The two types do not correspond to the 
leukemia type (AML/ALL). Dudoit et al. [7] remark, that the expressions were 
measured in different labs at different times. Different experimental conditions might 
be the cause of the different distributions. 

4 Identification of interesting genes 

Golub et al. [3] used a minor variant of a linear discriminate analysis for 
multivariate normal class density schemes. They identified 50 genes to be interesting 
for the ALL/AML discrimination. The number of genes is however, mostly derived 
from plausibility considerations. See Figure 4 for a plot of these genes’ expression 
values. 

We used the machine learning algorithm sig* [8 ] to identify genes that are 
significant for the AML / ALL classification. This is a robust variant of the t-statistics 
used elsewhere in the form of adjusted p-values [9]. Sig* identified 45 genes to be 
significant for the ALL/AML discrimination. See Figure 5 for an overview on 
expression values for these genes. 
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5 ESOM clustering of the interesting genes 

Emergent SOMs (ESOMs), which are characterized by their size (typically 103 – 
106 and more neurons) and their ability to discover new sub- classes, are used for 
clustering. The toroid map structure we use avoids borderline effects and leads to a 
classification which is following the input data’s intrinsic structure. Visualization and 
clustering is done with the U–Matrix which depicts the distances of the n – dimensional 
data space (see [8] and [10]). 

We trained a 64*64 ESOM for 30 learning epochs with the 45 genes calculated by 
sig*. The U–Matrix shows 4 classes. Figure 7 shows the 4 classes projected into the 
U-Matrix. These 4 classes consist of 2 major classes. One of these major classes 
contains 3 subclasses. It is the tiled view of an ESOM with toroid topology which leads 
to an image which shows every structure of the U–Matrix 4 times but has the advantage 
to show border crossing clusters [11]. 

A projection of the existing classification into AML / ALL is diagrammed in Figure 
6. The pre- classification into acute lymphoblastic leukemia (ALL) and acute myeloid 
leukemia (AML) is also manifested in the ESOM structure. We stress this point 
because the separation of these two groups is vitally important for the treatment. In 
addition to that it is a reassurance that the classes produced by the ESOM are 
reasonable. In addition to the reproduction of the AML / ALL classes the U–Matrix 
divides AML into 3 subclasses. These sub- classes of AML can be easily seen in the 
plot of the expression values for all 45 genes in Figure 5. From left to right the 3 
subclasses for ALL are shown followed by the class for AML. At the right end of the 
plot there are two outliers. The genes found by Golub et al. [3] are shown in Figure 4. A 
comparison of both plots shows that the sub- classes found by the U-Matrix can also be 
found in the gene set proposed by Golub et al. 

 

Figure 4 expression values of the 50 
genes found by Golub et. al 

 

Figure 5 expression values for 45 genes 
calculated by sig* 
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Figure 6 Classes from ESOM and U-Matrix match AML / ALL diagnosis 

 
Figure 7 U-Matrix shows 4 different classes 
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6 Conclusion 

Emergent Self Organizing maps are a very capable way of finding structures in 
high dimensional spaces. A pre-condition for successful clustering with ESOMs is a 
sensible distance measure which is depending on the data’s variances. This paper has 
shown that conventional calculations of variance and mean are not appropriate for 
DNA array datasets. Therefore we propose the PDEplot to get an estimation of robust 
values for location and dispersion. The PDEplot is then the basis for further distance 
based clustering methods in high dimensional data sets. The leukemia data set is a 
good example for the superiority of the PDEplot because conventional methods do not 
detect the underlying two different distributions but rather eliminate these differences. 
If the data’s variances are compensated in an adequate way the Emergent Self 
Organizing can detect not only existing (known) clusters but also discover new classes. 
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