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in continuous projection techniques.
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Abstract. The visualization of multi-dimensional data has been stud-
ied for a long time. Here we propose to visualize any distortion measure
associated to a projected datum in continuous projection techniques, by
coloring its corresponding Voronoi cell in the projection space. We apply
this approach to detect where the high-dimensional manifold has been
torn or glued during the projection. We experiment this technique with
the Principal Component Analysis and the Curvilinear Component Anal-
ysis for different databases.

1 Introduction

Projection techniques are useful for the exploratory analysis of a set of multi-
dimensional data. They project the data in a lower-dimensional space (usually
two-dimensional) which helps the expert to apprehend visually their topology.
We consider the ” continuous” projection techniques such as the Principal Com-
ponent Analysis (PCA) (Hotelling 1933) which projects linearly the data onto
the principal axes of their distribution, and the Curvilinear Component Analy-
sis (CCA) (Demartines et al. 1997), a variant of the Multi-Dimensional Scaling
(MDS) (Torgerson 1952) and the Non Linear Mapping (NLM) (Sammon 1969)
which aim at preserving pairwise distances between data from the input space
to the projection space.

In general, these projection techniques lead to a loss of information through
the stretching or the compression of some of the pairwise distances. Measuring
and visualizing these distortions is crucial to the expert to detect whether the
features observed in the projection space which are the basis of the exploratory
data analysis, are faithful images of some features in the input space or arti-
facts of the projection technique. Therefore it is a way to help the expert to
apprehend the topology of the data in the input space.

A large number of measures and associated visualization techniques have
been proposed for the Self-Organizing Map (Kohonen 1988; Vesanto 1999),
but very few for the other techniques (e.g. ”dx-dy” (Demartines et al. 1997),
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" Trustworthiness” (Venna et al. 2001)). Here, we propose a technique to visu-
alize any measure associated to a datum, and we apply this technique to detect
where a manifold has been torn or glued during the projection with the PCA
and the CCA.

2 Principle

We consider a set of data z = (z1,...,,) in the input manifold E c R¢
euclidean, and the set of corresponding projections y = (yi1,...,¥,) in the
projection manifold F C R? euclidean. A projection function f : B — F
associates to each point x; a projection y; = f(z;). X with X;; = ||z, — ;]|
and Y with Y;; = |ly; — y;l|, are the euclidean distance matrices computed
between the points of E and F respectively. We consider that a distortion
measure m; € [0,1] is associated to each projection y;.

We propose to give the white color for m; = 1 and the black one for m; = 0
following a linear grey scale, to the Voronoi cell V; associated to y; and defined
as (Okabe et al. 1992):

Vyiey, Vi={veF|Vy ey, (v—u)* < (v—uy;)*}

Using Voronoi cells makes easier the inference of the color (hence the mea-
sure) associated to a projection point, because any point in the space belongs
by definition to the Voronoi cell of its closest projection point, so is given the
color of this point. It also allows to cover the entire projection space, so there
is no need to define a specific background color which could disturb the visual
analysis. This idea has been proposed for Self-Organizing Maps (Vesanto 1999)
with square or hexagonal Voronoi cells corresponding to different topologies of
the maps, but it had not yet been experimented with continuous projection
techniques.

3 Visualizing where the input manifold has been
torn or glued

The ”similarity coloring” has been proposed in (Kaski et al. 1998) and in a
matrix form in (Rousset et al. 2001) for the SOM. It is based on the measure
and the visualization as a color, of the normalized distance of any datum z; to
a selected datum x, in the input space E. Following this principle, we propose
a ”proximity” measure m!°® associated to any point y; and defined as:

Xis

Vie{l,...,n}, mlc=1—- ——2°
{ } man(st)

i (1)

The data whose projections are associated to the same color in F' are at the
same distance to the selected datum in E. The brighter the color, the closer the
distance. Thus if two projections y; and y, are far from (close to) each other in
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F while the corresponding z; and z, are close to (far from) each other in E (i.e.
their Voronoi cells have a similar (different) color but are separated by some
darker cells (are adjacent)), then the manifold E has been torn (glued) between
these two points during the projection f. Notice the measure is normalized so
the black color is given in F' to the farther point to the selected point in E,
and the white color to the selected point itself.

To help selecting the points y; likely to reveal such tearing or gluing, we
propose to visualize for each projection point y; the corresponding compression
for the PCA: M; = Y, D} with D;; = Xj; — Yi; and D}f; = Dy; if Di; >0, 0
else, or the stretching for the CCA: M; = E]. D;; with Di; = —D;; if D;; <0,
0 else. The corresponding normalized measure mé!

¢ associated to a projection
y; is defined as:

all _ .ZM'Z — mlnk(Mk)
¢ man(Mk) — mink(Mk)
The brighter the color associated to a projection, the higher the probability

for the corresponding datum to be close to a tearing or gluing of the input
manifold E.

m

4 Experiments

We compare PCA and CCA onto two simple data sets with known topology:
two interlaced rings on the figure 1 and a sphere on the figure 2. The results
are interpreted in the caption of the figures.

5 Discussion

As far as the X and Y matrices have been computed, the computation load is
very low (O(n) to compute the distortion measures and O(nlog(n)) to compute
the Voronoi diagram). For all the continuous projection techniques derived
from MDS and NLM, both these matrices are necessarily computed to carry
out the projection. For PCA, both matrices have to be computed from scratch
which involves O(dn?) operations.

The expert which has selected some projection technique with some similar-
ity measure to compute X and Y, is prepared to analyze visually the projection
distribution according to this knowledge. The distortion measures and the vi-
sualization technique we propose only makes visible to the expert the proximity
information which is contained in X and Y, but which may not appear through
the projected distribution: projections which seem to be close to or far from
each other in the projection space according to the similarity measure used in
Y and known by the expert, are not necessarily so in the input space according
to X. So it seems possible to use any metric or similarity measure to define X
and Y with the distortion measure and visualization proposed, but this point
needs further experiments.
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Figure 1: The PCA and CCA of two interlaced rings : (a) Initial 3D data.
(b) Compressions after the PCA appear close to the crossing of both rings. The left
ring is the most distorted. (c¢) (magnified on (d)) Proximity measure associated to a
point selected at a crossing (thick circle with white Voronof cell): projections close
to each other with adjacent Voronoi cells have very different colors, showing that
both rings have been glued while they are normally separated in the input space.
(e) Stretching after the CCA gather at the extreme areas of the top and the inside
groups of projections. (f-g) Proximity measure: bright areas are in fact connected
in the input space. (h) All the points associated to middle grey cells (like the top
and the inside groups) are at the same distance from the selected point, and there is
neither gluing nor tearing at this point. From the observations (f-g-h) it is possible
to infer what the data look like in the input space: the top and the inside groups are
topologically connected in the way shown in (f-g) (i.e. homeomorphic to a circle),
and geometrically lie on a sphere with the selected point in (h) as the plausible center.
(i) A badly projected point (”outlier”) after the optimization phase of the CCA is
detected: the selected point in the bottom right corner should have been projected
in the bright area of the top group.
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Figure 2: The PCA and CCA of a sphere: (a) Data on a sphere. (b) Com-
pressions after the PCA gather at the center of the projected distribution. (c¢) The
proximity measure shows that some points from the rear and the front of the sphere
are close in the projection space, there is gluing of the input manifold (dark and bright
adjacent cells around the selected point). (d) Stretching after the CCA gather at the
vertices of the triangular projected distribution. (e-f) The proximity measure shows
how the vertices and the edges of the triangle are in fact connected in the input space.
(g) Neither tearing nor gluing are detected at the center of the projected distribution.

The combination of the distortion measure and the visualization process we
propose, not, only allows to detect outliers, or gluing and tearing of the input
manifold, but also allows to reconstruct the topology of the data in the input
space from the observation of their projection.

The technique only depends on X and Y so it applies in the case where only
X is provided but z is not. In the case of incomplete X, the distortion measures
proposed have to be adapted, and a specific color or texture should be used in
the visualization process to account for the lack of some of the distances.

6 Conclusion

We proposed a simple way to visualize any distortion measure associated to a
projection point in continuous projection techniques. This technique associated
to a relevant distortion measure provides a very useful view of the quality of
a projection. It allows to detect projection artifacts such as outliers, and to
visualize distortions such as tearing or gluing, avoiding errors of interpretation
and helping to reconstruct the topology of the data in the input space.

We intend to adapt this technique to visualize measures associated to pairs
of projections. Additional experiments with higher dimensional data or other
metrics should also be carried out to set definitely the benefits and the limits
of this promising approach.
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