
High-Accuracy Value-Function Approximation

with Neural Networks Applied to the Acrobot

Rémi Coulom

CORTEX group, LORIA
Nancy, France

Abstract. Several reinforcement-learning techniques have already been
applied to the Acrobot control problem, using linear function approxima-
tors to estimate the value function. In this paper, we present experimen-
tal results obtained by using a feedforward neural network instead. The
learning algorithm used was model-based continuous TD(λ). It generated
an efficient controller, producing a high-accuracy state-value function. A
striking feature of this value function is a very sharp 4-dimensional ridge
that is extremely hard to evaluate with linear parametric approximators.
From a broader point of view, this experimental success demonstrates
some of the qualities of feedforward neural networks in comparison with
linear approximators in reinforcement learning.

1 Introduction

Reinforcement learning [9] is an adaptive technique to solve sequential decision
problems, that is to say problems of selecting actions to control a process, in
order to maximize some cumulative reward. This kind of technique has been
applied successfully to domains such as game-playing and motor control.

Most of reinforcement-learning algorithms consist in evaluating a value
function that estimates the outcome of acting from a particular state. When
the system to be controlled can be in a very large number of states, this value
function has to be estimated by a generalizing function approximator.

It is often advised that linear parametric function approximators are well
adapted for this approximation task (linearity is meant as linearity of the out-
put with respect to parameters), but non-linear function approximators such
as feedforward neural networks can be used too. Linear approximators are
preferred because of some theoretical convergence guarantees, and because of
their ability to perform local generalization, which makes incremental learning
more efficient.

In this paper, we demonstrate that feedforward networks can still perform
better than linear approximators in terms of value-function accuracy on the
acrobot swing-up task. The next section introduces notations and algorithms.

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 7-12



Section 3 presents experiment results. Section 4 discusses them and compares
them to related work. The last section gives direction for further research.

2 Experimental Setting

2.1 General Formalism

A continuous reinforcement-learning problem is defined by:

• states ~x ∈ S ⊂ Rp,
• controls ~u ∈ U ⊂ Rq,
• system dynamics f : S × U 7→ Rp, so that ~̇x = f(~x, ~u),
• a reward function r : S × U 7→ R,
• a shortness factor sγ ≥ 0 (γ = e−sγδt).

A strategy or policy is a function π : S 7→ U that maps states to controls.
Applying a policy from a starting state ~x0 at time t0 produces a trajectory
~x(t) defined by the ordinary differential equation ~̇x = f

(

~x, π(~x)
)

. The value
function of π is defined by

V π(~x0) =
∫ ∞

t=t0

e−sγ(t−t0)r
(

~x(t), π
(

~x(t)
)

)

dt . (1)

The goal is to find a policy that maximizes the total amount of reward over
time, whatever the starting state ~x0, that is to say π∗ so that

∀~x0 ∈ S V π
∗
(~x0) = max

π:S 7→U
V π(~x0) .

2.2 The Acrobot

The acrobot [7] is made of two articulated segments. One extremity (the
“hands”) is fixed, and the other (the “feet”) is free. The control variable is
a torque applied at the joint between the two segments. There are four state
variables (θ1, θ2, θ̇1, θ̇2), which are the angles of the two segments with respect
to the vertical axis, and their derivatives (θ1 for “arms” and θ2 for “legs”). The
goal is to reach the vertical balance position. Reward is the height of the feet.
Complete specifications are available in [2].

2.3 Learning Algorithm

In order to approximate the optimal value function V ∗ with a parametric func-
tion approximator V~w, where ~w is the vector of weights, the continuous TD(λ)
algorithm [3] consists in integrating an ordinary differential equation:



















~̇w = ηH~e ,

~̇e = −(sγ + sλ)~e+
∂V~w(~x)
∂ ~w

,

~̇x = f
(

~x, π(~x)
)

,

(2)

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 7-12



with
H = r

(

~x, π(~x)
)

− sγV~w(~x) +
∂V~w
∂~x
· f
(

~x, π(~x)
)

.

H is the Hamiltonian and is a continuous equivalent of Bellman’s residual.
H > 0 indicates a “good surprise” and causes and increase in the past values,
whereas H < 0 is a “bad surprise” and causes a decrease in the past values.
The magnitude of this change is controlled by the learning rate η, and its time
extent in the past is defined by the parameter sλ. sλ can be related to the
traditional λ parameter in the discrete algorithm by λ = e−sλδt. ~e is the vector
of eligibility traces. Learning is decomposed into several episodes, each starting
from a random initial state, thus insuring exploration of the whole state space.
During these episodes, the policy π is chosen to be greedy with respect to the
current value estimate V~w. In this experiment, we used η = 0.01, sλ = 2, trial
length = 5s, Euler numerical integration with δt = 0.02s.

2.4 Function Approximators

The feedforward neural networks used in this experiments had fully-connected
cascade architectures, with 30 neurons and 378 weights. Hidden neurons were
sigmoids and the output was linear. Weights were initialized with a standard
deviation equal to 1/

√
m, where m is the number of connections feeding into the

node [4]. Inputs were normalized and centered. For each angle θ, cos θ and sin θ
were given as input to the network, to deal correctly with circular continuity.
Learning rates were adapted as explained in [2], by simply dividing the learning
rate of the output layer by the square root of the number of neurons.

3 Experiment Results

The acrobot was trained using the previous algorithm for 1 million trials.
Progress was not monotonous: the TD(λ) algorithm has no convergence guar-
antees, and did indeed show some instabilities. Despite some short periods of
performance decrease, the global trend was a steady performance improvement.

Figure 1 shows a trajectory of the acrobot after training, starting from the
downward position. It managed to reach the vertical position at a very low
velocity, but it could not keep its balance. Figure 2 shows a slice of the value
function obtained.

4 Discussion and Related Work

Here is a summary of some of the most significant previous results obtained
with reinforcement learning applied to the Acrobot:

• Sutton [8] managed to build an acrobot controller with the Q-learning
algorithm using a tile-coding approximation of the value function. He
used umax = 1 Nm, and managed to learn to swing the endpoint of the

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 7-12



Figure 1: Acrobot trajectory. The time step of this animation is 0.1 seconds.
The whole sequence is 12-second long.

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 7-12



V

+0.4

−0.4

θ1

−π

+π

θ̇1

+10

−10

Figure 2: A slice of the Acrobot value function (θ2 = 0, θ̇2=0)

acrobot above the bar by an amount equal to one of the links, which is a
lot easier than reaching the vertical position.

• Munos [6] used an adaptive grid-based approximation trained by value it-
eration, and managed to teach the acrobot to reach the vertical position.
He used umax = 2 Nm (so did we), which makes the problem slightly eas-
ier. His goal was to reach the vertical position regardless of the velocity,
so the acrobot could not keep its balance.

• Yoshimoto et al. [10] succeeded in balancing the acrobot with reinforce-
ment learning. They used umax = 30 Nm, which makes the problem
much easier than with 1 or 2 Nm.

• Boone [1] obtained the best controllers, but the techniques he used are
not really reinforcement learning (he did not build a value function) and
are very specific of this kind of problem.

In comparison with previous work, experiments reported in this paper either
solve a significantly more difficult problem (first three items), or use a more
generic method (last item).

One particularly striking aspect of this result is the very sharp ridge of the
value function plotted on Figure 2, approximated with a network of only 378
weights. Generic parametric linear function approximator would require a huge
number of weights to get such a high resolution in a 4-dimensional state space.

The downside of this accuracy is the huge number of trials required. This
make this method impractical for real-time learning on a real robot.

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 7-12



5 Conclusion and Perspectives

Experimental results demonstrated that a feedforward network can learn high-
resolution features of a value function, at the expense of requiring a lot of trials.
A challenge for the future would be to try to design algorithms that combine the
data-efficiency of local linear approximators with the approximation ability of
feedforward networks. A possibility might be to incorporate episodic memory
into the reinforcement-learning process, to overcome the high interference [5].

References

[1] Gary Boone. Minimum-time control of the acrobot. In 1997 International
Conference on Robotics and Automation, pages 3281–3287, Albuquerque,
NM, 1997.

[2] Rémi Coulom. Reinforcement Learning Using Neural Networks, with Ap-
plications to Motor Control. PhD thesis, Institut National Polytechnique
de Grenoble, 2002.

[3] Kenji Doya. Reinforcement learning in continuous time and space. Neural
Computation, 12:243–269, 2000.

[4] Yann Le Cun, Leon Bottou, Genevieve B. Orr, and Klaus-Robert Müller.
Efficient BackProp. In Genevieve B. Orr and Klaus-Robert Müller, editors,
Neural Networks: Tricks of the Trade. Springer, 1998.

[5] James L. McClelland, Bruce L. McNaughton, and Randall C. O’Reilly.
Why there are complementary learning systems in the hippocampus and
neocortex: Insights from the successes and failures of connectionist models
of learning and memory. Psychological Review, 102(3):419–457, 1995.

[6] Rémi Munos and Andrew Moore. Variable resolution discretization for
high-accuracy solutions of optimal control problems. In International Joint
Conference on Artificial Intelligence, 1999.

[7] Mark Spong. The swingup control problem for the acrobot. IEEE Control
Systems Magazine, 15(1):49–55, February 1995.

[8] Richard S. Sutton. Generalization in reinforcement learning: Successful
examples using sparse coarse coding. In Advances in Neural Information
Processing Systems 8, pages 1038–1044. MIT Press, 1996.

[9] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[10] Junichiro Yoshimoto, Shin Ishii, and Masa-aki Sato. Application of rein-
forcement learning to balancing of acrobot. In 1999 IEEE International
Conference on Systems, Man and Cybernetics, volume V, pages 516–521,
1999.

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 7-12




